
MAGNETO-MECHANICS OF MAGNETIC SHAPE-MEMORY CRYSTALS WITH MICROPEENED SURFACES

ZANE HARBISON, GIANELLA CONDOR, AMMON BUTLER, JOHN MARTIN, SHANE PALMER, PAUL LINDQUIST, PETER MULLNER

Putting a magnetically-powered "car" in your body. INTRODUCTION PROCEDURE DATA: Effect of Micropeening on Stress/Strain Behavior in MSMM **STRESS** 1. Growing the Crystal 4 Micropeening —Initial Polish — 25 psi Micropeen — 30 psi Micropeen — Repolished • Magnetic Shape-Memory (MSM) Materials **& STRAIN** 2. Cutting 5 Micromechanical 3.5 Nickel-Manganese-Gallium (Ni₂MnGa) 3. Polishing Testing 3 Magnetic Reset 6. Twinning Deformation Mechanism 2.5 (MPa) 2 1.5 1 Micropeening 3 MPa Limit 1 mm Increasing Stress Thresholds MSMs & • Decrease in Strain 0.5 **ACTUATION** Ω 0.005 0.01 0.015 0.02 0.035 0.04 0 0.025 0.03 Height (µm) Strain Movement Driven Purely by Magnets A. Twin Boundaries Twin Boundary Movement B. Pumps, Positioning Devices, and Circuit Breakers CONCLUSIONS

2009, Boston, MA, November 29, 200

	1.01
NAR BARAN	0.50
Render -	0.00
	-0.50
	1.00
	-1.50
	-1.75

Micromechanical Testing

- Twin Boundary Character
- Appear at Stress Peaks
- o Singular vs. Numerous
- Quantitative Relationship: Micropeening & Stress

FUTURE PLANS

25 psi — A Happy Medium?

- More Systematic Experimentation
 - Micropeen at lower pressures

Twinning Comparison: Polished (top), Micropeened (bottom)

We acknowledge financial support through the National Science Foundation project grant NSF-DMR 1710640.