Optimizing Three-Dimensional Bioprinting for Cell Culture Scaffolds

Emma Brudos ${ }^{1,3}$, Miranda Nelson², David Estrada ${ }^{3}$

INTRODUCTION

Leukemia

- A type of blood cancer that originates within bone marrow
- About 40% of Leukemia patients experience relapse after bone marrow transplant treatment, which has a high mortality rate ${ }^{1}$

Trabecular Bone

- Spongy bone that houses the bone marrow
- Red blood cells, white blood cells, and platelets are formed ${ }^{2}$
- Difficult to study in vivo due to the location and type of tissue

Figure 1. Trabecular Bone Diagram ${ }^{3}$

OBJECTIVE

Optimize and print a biomimetic trabecular bone scaffold to study cell interactions for improving leukemia treatment

METHODS

Bioprinting

- Cellink BioX printer \& bioinks
- .stl from MAL

- Print parameters changed:
- speed, nozzle gauge, layer height, extrusion pressure, infill density
- G-Code
- Ink Dilution and Culture Conditions (media, PBS, incubation)

Testing and Characterization

- Ink testing: filament test, stack test, layer height test ${ }^{4}$
- Z-stack pore size measurements - 300-600 $\mu \mathrm{m}$ pore size for healthy trabecular bone ${ }^{5}$

Figure 4. 3D Printed Bone Scaffold

RESULTS

- Average short diameter of pores: $821.33 \mu \mathrm{~m}$
- Average long diameter of pores: $1299.01 \mu \mathrm{~m}$
- PBS destroys chemical cross linked prints*

- Best resolution with low pressure and low speed
- Pore sizes are 135.6% bigger than actual*
- Diluted inks survived PBS soak, undiluted survived media soak

CONCLUSIONS

From the work done, the following conclusions were made:

1. The pore sizes measured may be closer to the appropriate size than it seems due to the structure of the scaffold and the measurement method.
2. The ion exchange that occurs between the crosslinking agent and the PBS may only occur at higher temperatures.
3. In order to increase resolution, smaller nozzle size may be necessary.
4. Incorporating supports and printing directly into the crosslinking agent has the possibility to provide a better structure.

FUTURE WORK

- Incorporating additives
- Mixing in cells
- Improving optimization protocols
- Ink testing
- Observing structural integrity for long-term culture conditions

Acknowledgements

Funding for this work was provided by NSF Career Award: 1848516 and the National Science Foundation via the Research Experience for
Undergraduates Site: Materials for Society (Award No. 1950305) Undergraduates Site: Materials for Society (Award No. 1950305) Thanks to Omor Khan and the Mechanical Adaptations Lab (MAL) fo providing the trabecular bone model. Stll file
References
Ren
Inse

