Optimizing Three-Dimensional Bioprinting for Cell Culture Scaffolds

Emma Brudos^{1,3}, Miranda Nelson², David Estrada³

1 Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, 2 Mechanical and Biomedical Engineering, 3 Materials Science and Engineering, Boise State University, Boise, Idaho 83725

INTRODUCTION

Leukemia

- A type of blood cancer that originates within bone marrow
- About 40% of Leukemia patients experience relapse after bone marrow transplant treatment, which has a high mortality rate¹

Trabecular Bone

- Spongy bone that houses the bone marrow
- Red blood cells, white blood cells, and platelets are formed²
- Difficult to study *in vivo* due to the location and type of tissue

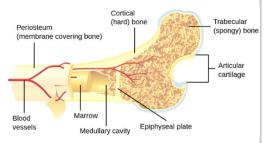


Figure 1. Trabecular Bone Diagram³

OBJECTIVE

Optimize and print a biomimetic trabecular bone scaffold to study cell interactions for improving leukemia treatment

METHODS

Bioprinting

- Cellink BioX printer & bioinks
- .stl from MAL

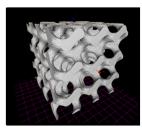


Figure 2. Trabecular Bone Gyroid Structure .stl File

- Print parameters changed:
- speed, nozzle gauge, layer height, extrusion pressure, infill density
- G-Code
- Ink Dilution and Culture Conditions (media, PBS, incubation)

Testing and Characterization

- Ink testing: filament test, stack test, layer height test⁴
- Z-stack pore size measurements
- 300-600 μm pore size for healthy trabecular bone⁵

Figure 3. Bioink Filament Test (2mm scale bar)

Figure 4. 3D Printed Bone Scaffold

RESULTS

- Average short diameter of pores: 821.33 µm
- Average long diameter of pores: 1299.01 μm
- PBS destroys chemical cross linked prints*

Figure 6. Dissolved Scaffold in PBS

- Best resolution with low pressure and low speed
- Pore sizes are 135.6% bigger than actual*
- Diluted inks survived PBS soak, undiluted survived media soak

CONCLUSIONS

From the work done, the following conclusions were made:

- 1.The pore sizes measured may be closer to the appropriate size than it seems due to the structure of the scaffold and the measurement method.
- 2. The ion exchange that occurs between the crosslinking agent and the PBS may only occur at higher temperatures.
- 3. In order to increase resolution, smaller nozzle size may be necessary.
- 4. Incorporating supports and printing directly into the crosslinking agent has the possibility to provide a better structure.

FUTURE WORK

- Incorporating additives
- Mixing in cells
- Improving optimization protocols
- Ink testing
- Observing structural integrity for long-term culture conditions

Acknowledgements

Funding for this work was provided by NSF Career Award: 1848516 and the National Science Foundation via the Research Experience for Undergraduates Site: Materials for Society (Award No. 1950305)
Thanks to Omor Khan and the Mechanical Adaptations Lab (MAL) for providing the trabecular bone model .stl file
Thanks to Mone't Alberts for Z-stack imaging

References

- Barrett AJ, Battiwalla M. Relapse after allogeneic stem cell transplantation. Expert Rev Hematol. 2010
- National Cancer Institute. Definition of bone marrow. Retrieved from
- rups...www.cancer.gov.pubrications: occionariascancer retraceurbone-marrow
 3. A cross section of a human long bone SVG file by Pbroks13, distributed under a Creative Commons Attribution
 3.0 Upported locerae. Retrieved from https://commons.wikimedia.org/wilndex.php?cuid=5188772
- O'Connell, C., et al. (2021). Characterizing Bioints for Extrusion Bioprinting: Printability and Rhoology. Method in molecular biology. 2140:111-133 https://www.researchate.net/bublication/340110752 Characterizing Bioints for Extrusion Bioprinting Printability.
- Lee, S., Porter, M., Wasko, S. et al. Potential Bone Replacement Materials Prepared by Two Metho