

Thermodynamic Study of Carbon Mineralization with Recycled Concrete Fines for Carbon Capture and Utilization Applications

Akhila Mattapalli^{1,2}, Yang Lu²

¹Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign ² Micron School of Materials Science and Engineering, Boise State University

I. Introduction

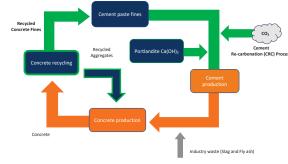


Figure 1.1: Concrete life cycle with lower CO $_2$ emissions. The green coloring represents the cycle improvements on the original orange process.

Motivation

- Over 30 billion tonnes of concrete are produced each year contributing to almost 10% of global CO₂ emissions.
- Although recycled concrete aggregates are more frequently used in practice, recycled concrete fines are mostly wasted.
- Carbon Mineralization is the process that occurs when concrete is exposed to carbon dioxide in the atmosphere or synthetically.
- Using the concrete as a form of Carbon Capture and Utilization (CCUS) will reduce the net CO₂ emissions produced.

Figure 1.2 : Comparison of current concrete production process (1) with novel concrete process (2)

- Calcination of Limestone is the largest contributor to CO₂ emissions.
- limestone co co
- The addition of cementitious supplementary materials (SCM) and CO_2 as a part of the cement mixture provides a pathway to use industry waste.
- Portlandite is an alkali activator that improves the reaction environment.

II. Materials and Methods

Modified Parrot-Killoh (MPK)

 Takes the non equilibrium inputs of the clinker phases and a few oxides and computes the mass of each at a given time based on their dissolution rates

1 + (x/c)

Figure 2.1: 5PL Equation

5 Parameter Logistic (5PL)

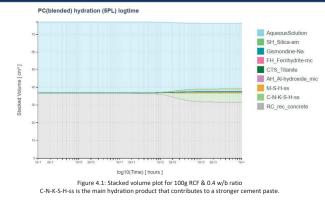
- The 5PL fit is used to model the dissolution of the recycle concrete fines based on the degree of reaction (DoR).
- 5PL parameters are traditionally calculated based on time-variant QXRD data.

CemGEMS

• Thermodynamic modeling using the Parrot-Killoh method for plots describing the evolution of hydration product volumes with respect to time. [1]

Recycled Concrete Fines

- The composition of recycled concrete is dependent on the location and construction practices of that region.
- For this study, the average of three Dutch concrete plants were used:



III. Discussion

RCF 4PL/5PL Parameters

- Due to a lack of QXRD data for RCF to fit the parameters, we used heat of reaction data over a span of 24 hours to contrive the reaction extent trend.
- Finding a range of plausible values based off of the rules that govern the 4PL/5PL fit provided us with a reasonable set of parameters to model the hydration of RCF.
- Using CemGEMS, we are able to visually represent the reactants consumed and the products formed as a function of time.

IV. Preliminary Results

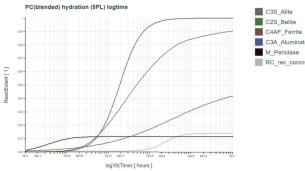


Figure 4.2: Plot containing the hydration reaction extent of clinker phases (alite, belite, ferrite, aluminate) and the extent of the recycled concrete fines. Up to 15% of the RCF is able to react to form hydration products.

V. Conclusion/ Future Work

- Substituting cement for RCF produces the main hydration products necessary.
- How much CO2 and portlandite at what temperature allows for the optimal process kinetics and products?
- What SCM will benefit the hydration process and concrete properties?
- How well do the experimental results match with the simulated data?

VI. Acknowledgements and References

This material is based upon work supported by the National Science Foundation via the Research Experience for Undergraduates Site: Materials for Society (Award No. 1950305) Thank you to Dr. Rick Ubic for this opportunity

 Kulik, D.A.; Winnefeld, F.; Kulik, A.; Miron, G.D.; Lothenbach, B. CemGEMS – an easy-to-use web application for thermodynamic modelling of cementitious materials. RIEM Tech Lett 2021, 6, 36-52; https://doi.org/10.1309/iremtechter.2021.140.
Marija Nedeljković, Jeanette Visser, Timo G. Nijland, Siska Valcke, Erik Schlangen, Physical, chemical and mineralogical

[2] many receiptory, concern exception of Dutch fine recycled concrete aggregates: A comparative study, Construction and Building Materials Volume 270, 2021, 121475, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2020.121475.

