How To Achieve The Resolution You Need

Presented by: Tim Ballinger and Dr. Erik Novak, Bruker-Nano, Inc. January 25th, 2012

Presentation Overview

- Basics of Resolution
- What resolution do you need?
- Comparing results across systems
- Resolution in Stylus Profilometers
- Resolution in 3D optical microscopes
- Conclusions and Discussion

What is Resolution?

- The fineness of detail that can be distinguished in a result
- Resolution for surface measurements can vary in all three dimensions: X, Y, and Z
- Resolution does NOT equate to accuracy or uncertainty!
 - You can have high resolution and still get the wrong result.
 - You can have poor resolution and still get a good measurement with enough sampling

Accuracy, Precision, and Resolution Are All Necessary For Good Metrology

- Precision is the repeatability of a measurement result
- Accuracy is closeness of the average result to a true value
- Both are essential for proper metrology
- Precision relates to resolution, but is not the same

Resolution Specifications Are Often Confusing

- Mathematical resolution is often used instead of something relating to a measurement
 - Some systems claim <1pm resolution. The helium (smallest) atom is 31pm in diameter!
 - 20 significant digits might not be meaningful, nor might 16 camera bits
- Lateral resolution often confused with pixel (or sample) spacing
 - For contact systems, the resolution is different along the scan direction as compared to between scan lines
 - For microscopes, optics often determine the resolvable feature size
 - Even when not optics limited you need at least 2 (preferably 3 or 4) pixels across a feature to resolve it

Many Factors Affect Resolution

- Measurement Setup
 - Scan speed trade resolution for throughput
 - Tip size (stylus)
 - Field of view (optical)
 - Processing algorithm analyze differently based on the measurement needs
 - Systematic errors that can mask real features
- Sample properties
 - Amount of dynamic range of the instrument being used
 - Signal to noise varies based on roughness, slopes, feature spacing
- Environment
 - Temperature drift during a measurement
 - Acoustic Noise
 - Can move the part during measurement
 - Can affect the instrument itself
 - Floor vibration

Averaging Can Reduce Noise and Improve Vertical Resolution

- Random (most) noise reduces by the square root of the number of averages.
- Averaging can help see finer detail than is otherwise possible.
- Examining Difference Measurements can tell you the noise floor you are achieving.
- Averaging may not help in loud or high vibration environments

Subtraction of Systematic Errors Exist on All Systems

BRUKER

- Scan stage flatness affects stylus results
- Optical aberrations affect microscopes
- Errors are near-constant and can be subtracted to improve resolution
- Details may then be observed which were previously impossible

Knowing Your Resolution Target Can Be Difficult

- What size defects or deviations matter?
- What parameters are important?
 - Roughness
 - Does Ra mean the same thing to you and your customer (or vendor)?
 - Heights
 - Curvature
 - Width
 - Defect Count
 - Structure size

- What tolerance is acceptable on those parameters
 - Each parameter will be resolved differently even with the same measurements!
- What areal coverage is needed for statistical significance?

Resolution Guidelines

Roughness

- For polished surfaces, use the highest lateral resolution that meets your throughput needs
- For rougher surfaces, make sure you capture the dominant frequencies
- Use the highest vertical resolution that meets your throughput needs
- Make sure you filter the data appropriately so you are measuring roughness!
- Defects
 - Use modeling or failure analysis where possible to determine critical defect sizes
 - Covering more area may be more important than seeing fine features

Comparing Results Between Systems Has Many Pitfalls

- "New System X measures a part 10nm differently than our old system. How do we offset System X"
- "I measured some parts across the two systems and the correlation is terrible!"
 - How was each system calibrated?
 - How do results vary within and across systems of each type?
 - Can the two systems detect the same features?
 - Are you examining the same areas on each system?
 - Do the analysis algorithms on the two systems match?
 - Is there sufficient range in the values for correlation to be meaningful?

Standard Error is Used to Evaluate Agreement Between Two Systems

- Good for parts with small range in values compared to the average
- Assumes measurement of the same features
- Two methods are considered agreeable to twice the calculated standard error
- Avoids having to know the true sample standard deviation required by the correlation coefficient

Correlation coefficient

$$R = \frac{\sigma_T^2}{\sqrt{\left(\sigma_{sys1}^2 + \sigma_T^2\right)\left(\sigma_{sys2}^2 + \sigma_T^2\right)}}$$

Standard error: standard deviation of the difference

$$\sigma_{SE}^{2} = \sigma_{sys1}^{2} + \sigma_{sys2}^{2}$$

Resolution in Stylus Profilometry

The Evolution of Stylus Profiler Resolution

- The World's First Stylus Profiler...
- The "Finger-Nail" Test
- Used by machinists through the 1940's to inspect the surface texture, **But...**
 - No data was gathered
 - No mathematical analysis conducted
 - No quantifying a surface

Stylus Profiler Resolution Evolution

- Improved sensor sensitivity
- Smaller, sharper stylus tips
- Increased number of data points
- Increase number of profiles for 3D
- Reduce instrument noise floor

Stylus Sensor = Vertical Resolution

LVDT Sensor Technology

(Linear Variable Differential Transducer)

- Infinite Resolution
- Unlimited Mechanical Life
- Environmentally Robust
- Repeatable, even over wide temperature range.

PIVOT

- Friction-Free Operation
- Fast Dynamic Response
- Absolute Output

High Permeability Nickel-Iron Core

STYLUS

IVDT

Repeatability Worth Repeating

- Some stylus profiler companies claim 0.01 Angstrom resolution!
- Repeatability is a more realistic spec that can be proven
- Repeatability is determined by performing 30 scans on a 100nm NIST traceable calibration standard
- Repeatability looks at the standard deviation of the profiler by scanning in the same location on the calibration standard
- For example, the DektakXT can achieve a step height repeatability of better than 5 Angstroms, 6 sigma

- 2um radius stylus with 60° cone angle specified for surface texture measurements (ISO & ANSI)
- Larger tips such as 12.5um radius act as a filter to smooth data
- DektakXT offers tips as small as 50nm radius
- High aspect ratio tips also available for narrow trenches

Lateral Resolution: Data Point Density

Scoring Points:

- Too few data points can act to smooth surface profile
- DektakXT offers up to 120,000 data points per scan
- DektakXT maximum data point density = 0.003um/data point

3D Resolution – Its About Time

1/26/2012

© Copyright Bruker Corporation. All rights reserved

Noise – The Resolution Killer

Improved Resolution Through:

- Lower noise floor achieved with stable sensor support (DektakXT Exclusive Single-Arch design)
- Vibration isolation (built-in)
- "Smart Electronics" establish new low-noise benchmark
- Environmental enclosure design reduces affects of acoustic noise and air currents
- Improved baseline stability by referencing all scans to thermally stable, glass optical flat, polished to Lambda-over-ten (λ/10)

Enables step height repeatability of better than 5 Angstroms!

Stress – Don't Stress Over Resolution

- Stress causes bowing or warping of substrate leading to de-lamination of layers, cracking or lithography problems
- Stylus profilers perform long scans (up to 200mm) before and after deposition to compare wafer bow caused by thin film stress
- Stylus profiler calculates tensile and compressive stress in MPa

Thin Film Measurement Applications

White Light Interferometers

- Dissimilar materials with different refractive index
- Thin films less than 2um become transparent
- Slopes greater than 30°

AFMs

- Vertical range limited to 10 microns
- XY scan range limited to 100 microns
- Results can be operator dependent

Stylus Profilers

- 3D mapping can be time consuming
- Contact method can damage soft samples
- Resolution can be tip dependent

Advantages of Stylus Profilometry

To Monitor Thin Film Deposition:

- Excellent measurement repeatability
- Resolve thin films below 50Å (5nm)
- Thin transparent films or dissimilar optical characteristics
- Long scan measurements up to 200mm to analyze thin film stress
- Ease of use (fast, simple, step heights)
- Lower cost, long life, durable and upgradeable

Resolution in 3D Optical Microscopy

1/26/2012

Lateral Resolution of Microscopes Are Determined by the Optics and the Camera

System is called:

- "detector limited" if $\varepsilon >> 0.6 \lambda$ / NA
- "optics limited" if $\varepsilon << 0.6 \lambda$ / NA

Effective lateral spatial sampling = $\epsilon = \Delta / M$ where Δ = pixel spacing & M = magnification

Resolution Limiting Element Changes Depending on the Optics Selected

Objective Magnification		High Resolution Camera		
2.5X	0.5		Optics	
	1		Limited	
	2		Camera-	
5X	0.5		Limited	
	1		Linited	
	2			
10X	0.5			
	1			
	2			
20X	0.5			
	1			
	2			
50X	0.5			
	1			
	2			
115X	0.5			
	1			
	2			

Optics Must Provide the Required Detail and Sampling

Monocrystalline Solar Cell

Stitching Allows Large Areas to be Measured at High Resolution

- 64 bit architecture allows thousands of files to be stitched together
- Each measurement overlaps its neighbors so that alignment can be achieved
- Errors of just a few nm are typically observed in stitched datasets
- For ultra-smooth surfaces, averaging and subtraction of systematic errors are key considerations

Specialized Measurements Employing Modeling Such as AcuityXR Can Improve Resolution

200nm grating 5 µm semiconductor features 150nm line pair

© Copyright 2011, Bruker

3D Interferometric Microscopes Always Provide Same Good Signal: Low noise, best roughness detection

- Plots below show the signal used to determine the surface for a line of pixels as you go through focus.
- Signal is unchanged no matter the magnification.

Any objective can be used for measurement

3D Confocal Microscopes Always Provide Variable Signal: Higher Noise at Lower Magnifications

- Plots below show the signal used to determine the surface for a line of pixels as you go through focus.
- Signal changes drastically with the magnification.

Only a few objectives usable for

Optimizing Resolution is a Balancing Game

- Many Tradeoffs
 - Setup complexity
 - Reference subtraction
 - Alignments
 - Fixturing
 - Measurement time
 - Scan speed
 - Averaging
 - Sample spacing and field of view
 - Data processing choices
 - Filter selection
 - Data interpolation
 - Analysis results
 - How many calculations?
 - How is a part pass/failed?

0.5 seconds - .5nm noise floor

10 seconds - .02nm noise floor

How to Achieve the Resolution You Need

- AFM: Highest lateral resolution with multiple modes and applications
- 3D Microscopes: Highest Z resolution, non-contact high-speed 3D measurements
- Stylus: High Z with excell

Atomic Force Microscopy

Nanoscale characterization of electrical, magnetic, compositional and material properties ment repeatability

Stylus Profiling

ement of phness Measure thin film step heights, stress and surface texture

Questions?

www.bruker.com

Emails: <u>Tim.ballinger@bruker-nano.com;</u> <u>Erik.novak@bruker-nano.com</u> www.bruker-axs.com

© Copyright Bruker Corporation. All rights reserved