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ABSTRACT

Imaging the subsurface can shed knowledge on important processes needed in a

modern day human’s life such as ground-water exploration, water resource monitor-

ing, contaminant and hazard mitigation, geothermal energy exploration and carbon-

dioxide storage. As computing power expands, it is becoming ever more feasible to

increase the physical complexity of Earth’s exploration methods, and hence enhance

our understanding of the subsurface.

We use non-invasive geophysical active source methods that rely on electromag-

netic fields to probe the depths of the Earth. In particular, we use Ground penetrating

radar (GPR) and Electrical resistivity (ER). Both methods are sensitive to electrical

conductivity while GPR is also sensitive to electrical permittivity. We combine both

types of data and let the different physical sensitivities of both methods cooperate in

order to account for non-uniqueness of the subsurface image.

Full-waveform inversion (FWI) of GPR is a promising technique for recovering

permittivity and conductivity of the subsurface by using the full response of the elec-

tromagnetic wave. While many advances have been made to FWI by the seismic

exploration community, using FWI on GPR surface acquired data is a young and

growing field of research. Using the full response of ER data is a more common prac-

tice in the geophsyical community. However, the spatial resolution of the recovered

conductivity lacks high spatial-frequency content due to the inherent sensitivity of
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the data.

Fortunately, the sensitivities of GPR and ER are complimentary. GPR is sensitive

to conductivity through reflection and attenuation while ER is directly sensitive to

conductivity. GPR is sensitive to high spatial-frequency content while ER is sensitive

to low spatial-frequency content.

We present a novel non-linear joint inversion that iteratively combines the sensitiv-

ities of both GPR and ER surface acquired data. Our algorithm uses both GPR and

ER sensitivites in order to effectively alleviate the non-uniqueness of the recovered

electrical parameters. We join GPR and ER sensitivities within the same computa-

tional grid and without the need of petrophysical relationships. By further assuming

structural similarities between permittivity and conductivity, we are able to relax a

priori assumptions about the subsurface and accurately recover parameters in regions

where the GPR data has a signal-to-noise ratio close to one. Furthermore, assuming

a good initial model is available our algorithm makes no assumption of the underlying

geometry.

The demanding computing requirements of GPR-FWI entail an unfeasible amount

of memory for existing ER inversion methods. This is due to the very fine discretiza-

tion of the subsurface required by GPR-FWI. We develop a 2.5d ER adjoint method

inversion that is capable of recovering accurate subsurface conductivity from field data

and relaxes the amount of required memory. We test our method on field data from

an alluvial aquifer site and find agreeable results with existing measurements in the

literature. Having feasible computational methods for both GPR and ER inversions

is an important step for using our joint inversion algorithms on field data.
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1

CHAPTER 1:

INTRODUCTION

Electrical properties of the subsurface such as permittivity and conductivity, hold rel-

evant information about the subsurface. Applications of such properties can be found

in water resource monitoring, hazard mitigation, geothermal energy exploration and

carbon-dioxide storage. With the environmental strain climate change is causing in

the water cycle and the increased concentration of carbon-dioxide in the atmosphere,

the importance of these applications for every-day human life is paramount. Under-

standing the shallow subsurface (≈ 100m in depth) structure of our planet can help

mitigate and prevent these clear and present dangers to our way of life.

GPR is sensitive to electrical permittivity through reflectivity and velocity, and

also sensitive to electrical conductivity through reflectivity and attenuation. ER is

directly (and only) sensitive to electrical conductivity. Despite the broad range of

applications for mapping electrical properties of the subsurface using GPR and ER

methods, often a choice has to be made in using either method because of their

contrasting sensitivities.

Fortunately GPR and ER data have a complimentary relationship. GPR is sensi-

tive to what ER is not (permittivity) and ER is directly sensitive to what GPR is only

sensitive by weak reflections and attenuation (conductivity). Moreover, GPR data

gives a higher space-frequency resolution image of the media of interest in contrast
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with the lower space-frequency image obtained with the ER data. Figure 1.1 gives

an example of field acquisition and observed data.

Figure 1.1: Field acquisition, a and b, and examples of their respective
observed data, c and d.

Joining data from different types of geophysical imaging methods holds the promise

of reducing the non-uniqueness of characterizing subsurface material properties (Ogunbo
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et al., 2018). Different approaches coupling the subsurface material properties have

been developed in order to join different types of sensitivities (Moorkamp, 2017).

Broadly, the material properties coupling can be done via geologic structure, where

different material properties are assumed to share the same geometry (Haber & Olden-

burg, 1997; Gallardo & Meju, 2003; Haber & Gazit, 2013), or linked by petrophysical

relationships (Ghose & Slob, 2006). More specifically, Linde et al. (2006) use GPR

and ER cross-hole data assuming structural similarities of electromagnetic properties

and simplifying the physics of the GPR to only use travel times.

We have developed a full-physics, multi-parameter, geometry free, non-linear joint

inversion algorithm that accounts for both permittivity and conductivity of the sub-

surface using GPR and ER surface-acquired data. Our joint inversion algorithm uses

the adjoint method (commonly refered to as full-waveform inversion in the case of

radar) for both GPR and ER data sensitivities. It accounts for both permittivity

and conductivity of the subsurface at each pixel of our discretized subsurface – a two-

dimensional slice in depth. Our algorithm does not rely on petrophysical relationships

between permittivity and conductivity and we apply no additional regularization to

the inversion beyond the joint objective function itself and the cross-gradients con-

straint.

Since its original introduction in the acoustic regime (Tarantola, 1984), Full wave-

form inversion (FWI) has been widely used in the seismic community. Due to the full

use of the wavefield in the inversion, the recovered parameters of the subsurface are

greatly improved compared with methods that only account for travel-time. By using

the full wavefield to compute the data sensitivities, FWI inherently takes into account

all wave phenomena such as reflections, refractions, waveguides, and multiples that
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travel-time methods struggle to resolve. Therefore, by using FWI we can significantly

enhance our ability to characterize the subsurface.

However promising, FWI holds many challenges for retrieving good quantitative

models of the subsurface. Using the full wavefield makes the inversion process highly

non-linear and it is easy to misinterpret local minima as solutions. In the context

of seismic FWI, many efforts have been made to relieve the ailments that make the

problem ill-posed. For example, it is well known that low frequencies in the waveform

data help the inversion avoid local minima (Virieux & Operto, 2009; Baeten et al.,

2013), so Bozdağ et al. (2011) and Liu & Zhang (2017) have also helped reduce this

problem. In Bozdağ et al. (2011), the authors propose using the analytic signal of

the observed waveform in order to isolate the instantaneous phase and amplitude (i.e.

envelope) information of the data and modify the FWI objective function accordingly.

In Liu & Zhang (2017) the authors join first arrival travel-time with early arrival

envelope data to build a rich low spatial-frequency initial velocity model that is then

used in the FWI routine. Both works find that the low frequency content of the

envelope waveform data is good for enhancing the low frequency spatial content of

the recovered velocity.

Previous work on GPR-FWI has mostly focused on transillumination data (Ernst

et al., 2007a; Meles et al., 2010; Klotzsche et al., 2014; Gueting et al., 2017), and only

recently Lavoué et al. (2014) on surface-acquired data. Using GPR-FWI for surface-

acquired data in the presence of strong attenuative media remains an important

challenge (Lavoué et al., 2014). In this work we use the envelope waveform data of

GPR and further join it with ER data to alleviate low spatial frequencies in both

electrical permittivity and conductivity.
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Joining data from different types of geophysical imaging methods holds the promise

of reducing the non-uniqueness of characterizing subsurface material properties (Ogunbo

et al., 2018). Different approaches coupling the subsurface material properties as well

as different algorithmic workflows have been developed in order to join different types

of sensitivities (Moorkamp, 2017). Broadly, the material properties coupling can be

done via geologic structure, where different material properties are assumed to share

the same geometry (Haber & Oldenburg, 1997; Gallardo & Meju, 2003; Haber &

Gazit, 2013), or linked by petrophysical relationships (Ghose & Slob, 2006). Our

approach for joint inversion is able to assume or ignore structural properties and in

neither do we use petrophysical relationships since the GPR and ER data are physi-

cally linked through conductivity with Maxwell’s equations. We are able to increase

the amplitude and spatial frequency resolution of the inverted electrical properties in

a joint inversion compared with individual inversions of surface-acquired data. In this

way the GPR and ER optimization problems effectively regularize each other while

honoring the physics.

Although in this work we focus specifically on GPR and ER data, there are other

geophysical exploration methods that have complementary sensitivities and share

physical parameters in their governing physics, i.e. gravity and elastic waves, tem-

perature and elastic waves (and gravity), magnetotellurics and electrical resistivity

(and radar), controlled source electromagnetics and electrical resistivity (and radar).

Through our joint inversion of GPR and ER data we have demonstrated how using

the adjoint method for computing data sensitivities can make use of the full physical

response in the data to cooperatively enhance the solution of the physical parameters.

In an even broader scale, we have demonstrated how different types of data that are
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inherently linked by their governing partial differential equations can be joined in a

non-linear inverse method to improve their individual sensitivities.

In order to develop our joint inversion algorithm, we have written a self-contained

code with both GPR and ER forward models, as well as all inversion routines. Be-

cause of the heavy computational burden of using the adjoint method on Maxwell’s

equations, our code is best suited for parallel implementation using high perfromance

computing techniques.

This dissertation develops the theory and implementation of our joint inversion.

We present synthetic examples with varying levels of difficulty to better illustrate the

attributes and caveats of our methods. In order to facilitate the understanding of our

inversion algorithms, we present an intuitive explanation of our methods with limited

detail in Chapter 2. Our joint inversion algorithm itself is broken down in three

chapters. Chapter 3 builds the foundations of our joint update. Chapter 4 enhances

the low spatial-frequency and accuaracy of our solution by using the envelope of the

GPR data and the cross-gradients constraint. Chapter 5 develops a low storage 2.5D

ER inversion scheme tested with field data.

1.1 Preliminaries

Our joint inversion is based on three ideas, (i) use the physics in Maxwell’s equa-

tions to join the sensitivities of GPR and ER data, (ii) transform the GPR data to

exploit low frequency content, and (iii) assume the subsurface electrical parameters

are structurally similar. We give simple one-dimensional examples for each of these

three ideas with minimal implementation details. Idea (i) is thoroughly explored in

the second chapter. Ideas (ii) and (iii) are fully implemented in the third chapter.
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1.2 Joining sensitivities of full-waveform GPR

and ER data

We first compute sensitivity updates separately for both the GPR and ER data us-

ing the adjoint method, and then we sum these updates to account for both types

of sensitivities. The sensitivities are added with the paradigm of letting both data

types always contribute to our inversion in proportion to how well their respective

objective functions are being resolved in each iteration. Our algorithm makes no as-

sumption of the subsurface geometry nor structural similarities between parameters

with the caveat of needing a good initial model. We find that our joint inversion out-

performs both GPR and ER separate inversions and determine that GPR effectively

supports ER in regions of low conductivity while ER supports GPR in regions with

high conductivity (i.e. strong attenuation).

1.3 Enhancing low frequency and exploiting

structural similarities

We propose three non-linear inverse methods for recovering electrical conductivity

and permittivity of the subsurface by joining GPR and electrical resistivity (ER)

data acquired at the surface. All methods use ER data to constrain the low spatial-

frequency of the conductivity solution. The first method uses the envelope of the GPR

data to exploit low frequency content in full-waveform inversion and does not assume

structural similarities of material properties. The second method uses cross-gradients

to manage weak amplitudes in the GPR data by assuming structural similarities

between permittivity and conductivity. The third method uses both the envelope
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of the GPR data and the cross-gradient of the model parameters. By joining ER

and GPR data, exploiting low frequency content in the GPR data, and assuming

structural similarities between electrical permittivity and conductivity we are able to

recover subsurface parameters in regions where the GPR data has a signal-to-noise

ratio close to one.

1.4 Inversion of 2.5D electrical resistivity data

using the adjoint method

We present a 2.5D inversion algorithm of electrical resistivity (ER) data that handles

realistic field experiments using low storage requirements. We use the adjoint method

directly in the discretized Maxwell’s steady state equation that governs the physics of

the ER data. In doing so we make no finite difference approximation on the Jacobian

of the data and avoid the need to store large and dense matrices. Rather, we exploit

matrix-vector multiplication of sparse matrices and find satisfactory results using

gradient descent for our inversion routine without having to resort to the Hessian

of the objective function. Moreover, our algorithm does not need extra padding

of the domain since it robustly accounts for boundary conditions in the subsurface.

Given the low storage requirements, our algorithm can be used for joint inversion with

other geophysical methods that may impose finer grid constraints (and larger memory

requirements) without the need of interpolating the sensitivities of the domain. We

tested our algorithm on field data acquired in an alluvial aquifer and were able match

the recovered conductivity to borehole observations.
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CHAPTER 2:

PRELIMINARIES

Our joint inversion algorithms presented in Chapter 3 and Chapter 4 regularize the

inverse problem of finding electrical parameters of the subsurface by (i) transforming

the sensitivities of the data, (ii) transforming the GPR data, and (iii) transforming

the model parameters. Each of these three types of transform (i) use the inherent

dependence of conductivity in both the GPR and ER data given by Maxwell’s equa-

tions, (ii) exploit low frequency content of the GPR data by using the envelope of

the waveform, and (iii) iteratively exchange structural information of the electrical

parameters using the cross-gradients constraint. We observe that (i) reduces the non-

uniquness of the inverse problem by eliminating local minima present in individual

inversions, (ii) enhances low-frequency information of the waveform data, and (iii)

enhances spatial frequency resolution of the recovered parameters.

2.1 Introduction

Regularizing the objective function is necessary when the observed data offer a non-

unique solution to the inverse problem. In the case of geophysical methods, it is often

the case that not enough data coverage is available to constrain a unique solution.

For differentiable objective functions, the non-uniqueness of the inverse problem arises

when the solution converges to a local minima. In any real valued function, as is the
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case for a typical objective function, local minima arise when the function is non-linear

(of degree larger than two).

Different methods exist for regularizing the objective function, i.e. reducing the

non-uniqueness of the inverse problem. Describing all of them is well beyond the

scope of this work. However, we mention that most approaches rely on introducing a

priori knowledge of the solution (Haber & Oldenburg, 1997; Gallardo & Meju, 2003),

or modifying the data to locally reduce the non-linearity of the objective function

(Bunks et al., 1995; Pratt et al., 1998; Meles et al., 2012). In this work we use both

approaches and develop a new method: directly enhancing the sensitivities of different

types of data that are sensitive to the same parameter.

2.2 Joining two sensitivities

We present a simplified example of the GPR and ER inversions. Assume our forward

models in discrete notation are of the form,

Lwuw = sw

dw = Mwuw

Ldcϕ = sdc

ddc = Mdcudc

(2.1)

where sw and sdc are 2 × 1 vectors (assumed known), and Mw and Mdc are linear

operators that collapse the dimension of the fields uw and ϕ (of dimensions 2 × 1)

onto the data dw and ddc (both scalars). Both Lw and Ldc are different 2×2 matrices

that depend non-linearly on both σw and σdc (both scalars). For only this chapter,
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we will write

σ =

σw
σdc

 , (2.2)

a 2× 1 vector. We denote the observed data dow and dodc.

Let the objective functions for dow and dodc be respectively,

Θw(σ; dow) = ||dw − dow||22,

Θdc(σ; dodc) = ||ddc − dodc||22.
(2.3)

We define the joint objective function that depends both on dow and dodc as,

Θ(σ; dow, d
o
dc) = Θw + Θdc. (2.4)

We use gradient descent for inverting all objective functions (Θw, Θdc, and Θ) with

respect to σ. The path of parameter iterations over the different objective function

surfaces are plotted in Figure 2.1. In this simplified example, we see that the surfaces

Θw and Θdc exhibit non-uniqueness of the solution σ as entire level curves of local

minima.

Although the gradient descent algorithm finds the true descent direction, it fails to

converge to the true solution. This is due to the strong non-linearity of the objective

functions Θw and Θdc: a first-order inverse method does not capture the correct

descent direction.

However, the surface Θ has been relieved of these local minima curves. In this

case, the gradient descent algorithm can correctly traverse the parameter space and

find the true solution. This is due to the local descent direction being accurately
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Figure 2.1: Optimizing individual objective functions in a and b. The
joint objective function in c. The big blue dot indicates the initial model
parameters, the yellow dot the recovered parameters, and the red star the
true solution.

approximated by a first-order inverse method. Hence, we have reduced the local

non-linearity of inverting Θw and Θdc by considering Θ instead.

2.3 The envelope of a waveform

In the context of FWI, low frequency content in the data is essential for avoiding

local minima in the objective function (Bunks et al., 1995; Pratt et al., 1998; Meles

et al., 2012; Bozdağ et al., 2011). Physically, convergence to a local minima can be
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manifested when the residual of synthetic vs observed data is small, but the recovered

parameters are such that the synthetic data is off by a cycle or more with respect to

the observed data. This phenomena has been coined as cycle skipping in the literature.

Enhancing the low frequency information in the waveform data can be a powerfull

tool to mitigate local minima in the solution. We use the approach of Bozdağ et al.

(2011), where the authors use the envelope of the waveform in a modified FWI scheme.

The full discussion of this approach is discussed in Chapter 4. In this section we

present an example of a single waveform and its envelope.

Figure 2.2: Waveform data (solid line) and its envelope transform (dashed
line) in time a and in the frequency domain b in black the data and in
grey the envelope.



14

Figure 2.2 displays an observed trace and its envelope. In Figure 2.2b we see that

the power spectra of the envelope is more heavily weighted towards low frequencies

when compared to the observed data. Furthermore, we note that the DC component

in the power spectra of the envelope can be intuitively explained by the lack of

oscillations in the time domain. Analytically, we can deduce this DC component by

approximating the envelope in time as a linear combination of gaussian functions and

subsequently use the properties of the Fourier transform (i.e. linearity, time-shift and

the gaussian having a gaussian as its Fourier transform).

Although the frequency content of the data changes under the envelope, this

approach does not impose a priori information on the inversion. As shown in Chapter

4, this approach improves low spatial frequency of the recovered parameters.

2.4 Structural constraints

Assuming structural similarities of the subsurface parameters between two model

parameters can be a powerfull tool for relieving the non-uniqueness of the inverse

problem Haber & Oldenburg (1997); Gallardo & Meju (2003); Ogunbo et al. (2018).

The cross-gradients constraint is a usual approach for informing two different param-

eters of their respective structure. Since the geophysical methods sensitive to either of

the two parameters need not be the same, assuming structural similarities can benefit

from different physical sensitivities.

Commonly, the implementation of the cross-gradients constraint modifies both

parameters by weighing their structures equally. However, since different geophysical

methods offer different sensitivities to material properites, this approach does not

take into account the stronger sensitivity in the data towards one parameter over the

other. Our inversion approach is able to more heavily weigh the structure of one
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parameter over the other. For a full discussion of this idea see Chapter 4. In this

section we present a simple one dimensional example.

Figure 2.3: Structural transformation of the parameters keeping black
constant in a, and blue constant in b. The dashed lines indicate the original
parameters.

Consider two different one-dimensinal parameters given by two different physical

sensitivities as shown in Figure 2.3. The sensitivity towards the blue parameter is

blocky, while the sensitivity towards the black parameter is smooth. If we wish

to imprint the structure of the black parameter onto the blue, the blue parameter

becomes smoother (Figure 2.3a). Conversely, if we wish to imprint the structure of

the blue parameter onto the black, the black parameter exhibits changes where the

sharp contrasts of the blue parameter are (Figure 2.3b).
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As shown in (Figure 2.3, our approach is capable of importing spatial frequency

content between the parameters. In the data domain, this means we are enhanc-

ing the physical sensitivity of the geophysical methods used. The price to pay for

this sensitivity enhancement is to introduce a priori information into the inversion

by assuming the parameters indeed share structural properties. As shown in Chap-

ter 4, this approach improves both low and high spatial frequency of the recovered

parameters.
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CHAPTER 3:

JOINING SENSITIVITIES OF

FULL-WAVEFORM GPR AND ER DATA1

We develop an algorithm for joint inversion of full-waveform ground-penetrating

radar (GPR) and electrical resistivity (ER) data. GPR is sensitive to electrical per-

mittivity through reflectivity and velocity, and electrical conductivity through reflec-

tivity and attenuation. ER is directly sensitive to electrical conductivity. The two

types of data are inherently linked through Maxwell’s equations and we jointly in-

vert them. Results show that the two types of data work cooperatively to effectively

regularize each other while honoring the physics of the geophysical methods. We

first compute sensitivity updates separately for both the GPR and ER data using

the adjoint method, and then we sum these updates to account for both types of

sensitivities. The sensitivities are added with the paradigm of letting both data types

always contribute to our inversion in proportion to how well their respective objective

functions are being resolved in each iteration. Our algorithm makes no assumption

of the subsurface geometry nor structural similarities between parameters with the

caveat of needing a good initial model. We find that our joint inversion outperforms

both GPR and ER separate inversions and determine that GPR effectively supports

1This chapter has been submitted to Geophysics and is currently under review. Domenzain
et al. (2019a)
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ER in regions of low conductivity while ER supports GPR in regions with strong

attenuation.

3.1 Introduction

Imaging electrical properties (e.g. electrical permittivity ε and conductivity σ) is

widely used for environmental and engineering applications. Contrasts in subsurface

permittivity have been used to locate contaminant media (Bradford & Deeds, 2006;

Babcock & Bradford, 2015), availability of water in the subsurface (Benedetto, 2010;

Dogan et al., 2011; Parsekian et al., 2012), measure stratigraphy and volumetric water

content in snow (Bradford et al., 2009a; Sold et al., 2013; Schmid et al., 2014), find

geologic structures (Kjær et al., 2018) and build hydrogeologic models for water-

flow simulations (Knight, 2001). Subsurface conductivity has been used to quantify

water content (Binley et al., 2002; Brunet et al., 2010; Beff et al., 2013), determine

temperature distributions for geothermal exploration (Fikos et al., 2012; Hermans

et al., 2012; Spichak & Zakharova, 2015), assess risk of landslides (Jomard et al., 2010;

Perrone et al., 2014), monitor carbon-dioxide storage (Bergmann et al., 2012; Carrigan

et al., 2013) and characterize mountain permafrost (Hauck et al., 2003; Scapozza et al.,

2011; Rödder & Kneisel, 2012). Despite the broad range of applications for mapping

electrical properties of the subsurface using GPR and ER methods, often a choice has

to be made in using either method because of their contrasting sensitivities.

GPR is sensitive to electrical permittivity through reflectivity and velocity, and

also sensitive to electrical conductivity through reflectivity and attenuation. However,

if attenuation is strong in the media of interest the observed waveforms might not

contain enough information to image either the permittivity or the conductivity. ER is

directly (and only) sensitive to electrical conductivity, however if the media of interest
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has low conductivity, the measured data might not have enough information to give a

meaningful image. Fortunately GPR and ER data have a complimentary relationship.

GPR is sensitive to what ER is not (permittivity) and ER is directly sensitive to what

GPR is only sensitive by weak reflections and attenuation (conductivity). Moreover,

GPR data gives a higher spatial resolution image of the media of interest in contrast

with the lower spatial resolution obtained with the ER data.

Even though ray-theory methods for processing GPR data might resolve important

features of the imaged media (Holliger et al., 2001; Bradford, 2006; Bradford et al.,

2009a), the caveat of only using the infinite frequency approximation of the data can

lead to unsatisfactory results (Johnson et al., 2007; Linde & Vrugt, 2013). Introduced

by Tarantola (1984) in the acoustic regime, full-waveform inversion of electromagnetic

data has seen a steady interest for recovering electrical properties of the subsurface

(see Ernst et al. (2007a) and Meles et al. (2010) for electromagnetic rather than

acoustic full-waveform inversion). While many advances have been made for cross-

hole data (Ernst et al., 2007a; Meles et al., 2010; Klotzsche et al., 2014; Gueting et al.,

2017), using full waveform inversion for surface acquired GPR data in the presence of

strong attenuative media remains an important challenge (Lavoué et al., 2014; Schmid

et al., 2014).

In Lavoué et al. (2014) the authors perform full-waveform inversions of GPR on

two synthetic examples, one with sources and receivers surrounding the target media

and one with sources and receivers at the surface. When the target media is sur-

rounded by sources and receivers they are able to recover accurate spatial resolution

and values of the electrical parameters even when their starting models for both per-

mittivity and conductivity are homogenous. However, when using surface acquired
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data the conductivity solution lacks accuracy and spatial resolution at shallow depths

and is almost insensitive to sharp contrasts at depth. Moreover, in this case their

starting models for both permittivity and conductivity are a smoothed version of the

true parameters, which assumes a very accurate initial model is available. The sharp

difference in the resolution of the recovered parameters between these two synthetic

experiments can be attributed to the sparse illumination due to having just surface

acquired data, and shows how ill-posed GPR full-waveform inversion can be when the

conductivity is not known a priori.

ER inversion methods using the full response of the measured electric field range in

how the data sensitivities are computed and in how the discretized physics are solved

(Loke & Barker, 1996; Spitzer, 1998; Ha et al., 2006; Pidlisecky et al., 2007; Domenzain

et al., 2017). Overall, the advances of the method have evolved in more accurate

discretization schemes and computationally cheaper inversion routines. Because of the

inherent low-spatial and shallow depth resolution of the ER data, sharp boundaries

of the subsurface conductivity can be challenging to capture without external a priori

knowledge of the subsurface or strong regularization (Hetrick & Mead, 2018).

In order to exploit the complimentary sensitivities of the GPR and ER exper-

iments, we implement an inversion algorithm that recovers both permittivity and

conductivity of the media of interest by joining the sensitivities of conductivity from

both the GPR and ER data in each iteration of the inversion process. In what fol-

lows we make the physical assumptions of an isotropic linear media where Ohm’s law

holds, with no lateral variation in the y-coordinate, a constant magnetic permeability

of µo and frequency independent electrical parameters.

In recent work regarding GPR full-waveform inversion (Ernst et al., 2007a; Meles
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et al., 2010; Klotzsche et al., 2014; Lavoué et al., 2014; Gueting et al., 2017) it has

been assumed that electrical conductivity is constant over a bandwidth of the radar

signal and permittivity is frequency independent. Incorporating frequency depen-

dent attenuation for a full-waveform inversion approach can be done as in Xue et al.

(2017), where the authors use a modified version of the wave equation (Zhu & Harris,

2014) and develop forward and adjoint operators that approximate the effects of fre-

quency dependent attenuation. This enforces a higher computational cost compared

to assuming frequency-constant attenuation. In Giannakis et al. (2015) the authors

develop a 3d finite-difference time-domain forward model for electromagnetic wave

propagation that incorporates frequency dependent parameters by convolving Debye

relaxation mechanisms directly in the wave solver. Their forward model is capable of

accurately predicting the behavior of electromagnetic fields with frequency dependent

parameters but a full-waveform inversion algorithm that accounts for the convolution

of relaxation mechanisms is still to be developed.

Recovering frequency dependent attenuation from surface acquired GPR data can

be done as in Bradford (2007). The method links the attenuation coefficient to a

dispersion relation that is measurable in the GPR data. It is noted that this method

does not account for intrinsic vs scattering attenuation since it does not take into

account the full kinematics of the electromagnetic wave. It is also recognized that

because of the inability of GPR data to recognize reflections due to velocity from

reflections due to conductive media, recovering the full attenuation response requires

additional low frequency data. Using the full kinematic response of GPR on surface

acquired data to recover attenuation is a very ill-posed problem. As an example, see

the results of Lavoué et al. (2014) on surface acquired data.
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In Figure 3.1a and b we present the real part of the frequency dependent effective

conductivity as well as the DC conductivity. These values were computed using the

Cole-Cole model with parameters given by Bradford (2007) (for sands and clay), Friel

& Or (1999) (for silty loam) and Taherian et al. (1990) (for sandstone with brine).

In general, the more conductive the material the larger the difference between DC

and effective conductivity. However, the larger the conductivity the less signal we

have in the GPR data. Figure 3.1d shows that for high conductivity the skin factor

drops below 1m as materials increase in conductivity. We note that for most earth

materials, the DC and effective conductivity differs by a factor of less than an order

of magnitude. In Table 3.1 we complete our list of materials with those in Loewer

et al. (2017) (for humus, laterite and loess). We quantify how much this factor is at

250MHz and find that most earth materials differ by a factor of less than 5. Only

dry sand (for this particular measured sample) exhibits a factor of 10, although the

DC and effective conductivity are still low at 0.45 and 4.5 mS/m respectively.

We recognize that frequency independent electrical parameters are generally not

found in nature. However, Figure 3.1 and Table 3.1 show that for a range of earth

materials the frequency dependence varies by a small factor (less than 5 in most cases)

and that in cases where the conductivity is large, the GPR loses most of its signal due

to attenuation. Assuming frequency independent parameters forms a starting point

for the evaluation of our inversion algorithm and comprises a reasonable trade-off

between computation cost, field applications, the full use of the GPR waveform, and

a lack of enforced assumptions of subsurface geometry and petrophysical models.

Joining data from different types of geophysical imaging methods holds the promise

of reducing the non-linearity of characterizing subsurface material properties (Ogunbo



23

et al., 2018). Different approaches coupling the subsurface material properties as well

as different algorithmic workflows have been developed in order to join different types

of sensitivities (Moorkamp, 2017). Broadly, the material properties coupling can be

done via geologic structure (where different material properties are assumed to share

the same geometry (Haber & Oldenburg, 1997; Gallardo & Meju, 2003; Haber &

Gazit, 2013)) or linked by petrophysical relationships (Ghose & Slob, 2006). More

specifically, Linde et al. (2006) use GPR and ER cross-hole data assuming structural

similarities of electromagnetic properties and simplifying the physics of the GPR to

only use travel times. Our approach for joint inversion does not assume structural sim-

ilarities and does not need petrophysical relationships since the GPR and ER data

are physically linked through conductivity with Maxwell’s equations. We are able

to increase the amplitude and spatial frequency resolution of the inverted electrical

properties in a joint inversion compared with individual inversions of surface acquired

data. In this way the GPR and ER optimization problems effectively regularize each

other while honoring the physics.

The layout of this chapter is as follows. In the subsections GPR Inversion and

ER Inversion both the GPR and ER inversion schemes are developed separately

and in Section Joint Inversion the method for joining the different sensitivities is

described. In Section Examples we give results from our method with two different

scenarios for underground exploration of surface acquisition: (1) low conductivity and

(2) high conductivity, and present results with added noise in both the GPR and ER

data.
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Figure 3.1: Frequency dependent conductivity and attenuation coefficients
of various earth materials. Solid and dashed lines represent (real) effective
and DC conductivity respectively. In a and b are low conductivity mate-
rials where GPR data has a large signal-to-noise ratio. In c and d are high
conductivity materials where GPR data has a low signal-to-noise ratio.
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Table 3.1: Frequency dependent and DC conductivities at 250MHz given
by the Cole-Cole model. Most earth materials present an increase of at
most 5 between DC and (real) effective conductivity.

Effective (mS/m) DC (mS/m) Effective/DC
Dry sand 4.54 0.45 10.1
Moist sand 6.53 2 3.26
Wet sand 8.06 6.06 1.33
Silty loam 17.3 3.5 4.93
Sandstone with brine 27.2 16.2 1.68
Humus 43.1 19.5 2.21
Laterite 45 9 5
Wet clay 68.4 42.5 1.61
Loess 185 72.3 2.55

3.2 Inversion methods

3.2.1 GPR inversion

The physics of the GPR experiment are given by the time dependent Maxwell’s

equations, 
µo 0 0

0 µo 0

0 0 ε




Ḣz

−Ḣx

Ėy

 =


0 0 ∂x

0 0 ∂z

∂x ∂z 0




Hz

−Hx

Ey

−

σ


0

0

Ey

+


0

0

−Jy

 ,

(3.1)

where Ey is the electric field component in the y direction, (Hx, Hz) are the magnetic

field components in the x and z direction, Jy is the source term, ε is the relative

electrical permittivity (which we refer to only as permittivity), and σ is the electrical
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conductivity. Both ε and σ are assumed constant in time and frequency independent.

In order to keep notation clean we will refer to operators and variables in upper and

lower case letters respectively, and so refer to the wavefield Ey as u. Table 3.2 gives

a comprehensive list of the notation symbols used in this dissertation. We use a

finite-difference time-domain method on a Yee grid (Yee, 1966) with PML boundary

conditions (Berenger, 1996) to solve the discretized time-domain (Domenzain et al.,

2017) version of equation 3.1 which for reference we write as,

u = Lw sw,

dsw = Mw u

(3.2)

where Lw is the discretized differential (time marching) operator of equation 3.1, u

is the electric field y component defined in space and time, sw is the source term,

Mw is the measuring operator, and dsw = Mw u is the data of the experiment, i.e.

a common-source gather. The operator Mw formalizes the action of taking the data

dsw (a two-dimensional slice in time and receivers) from the three dimensional tensor

u with dimensions of time, length and depth. From now on ε and σ will denote the

frequency independent electrical permittivity and conductivity distributions in the xz

plane and discretized as matricies of size nz×nx where nx and nz denote the number

of nodes in the xz-plane discretization.

We formulate our GPR inversion algorithm by finding parameters ε∗ and σ∗ that

satisfy,

{ε∗,σ∗} = arg min
1

2
(Θw,ε(ε; dow) + Θw,σ(σ; dow)) , (3.3)

where the subscript ∗ denotes the imaged parameters and dow denotes all the observed
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GPR data. We have,

Θw,ε =
1

ns

∑
s

Θs
w,ε, (3.4)

where s indexes the sources, ns denotes the total number of sources, and

Θs
w,ε =

||ew||22
||do,sw ||22

, (3.5)

where do,sw is the observed data for one source and ew = dsw − do,sw is the residual of

the modeled and observed data. A similar expression for Θw,σ follows with the only

difference between Θw,ε and Θw,σ being the order in the inversion scheme in which

they are evaluated.

In order to find model updates ∆σw and ∆ε that minimize Θw we first obtain

the gradients gw,σ and gε of Θs
w,ε and Θs

w,σ respectively following Meles et al. (2010)

using a full waveform inversion approach,

vw = Lw ew(−t), (3.6)

gw,σ = −
∑
t

u(−t)� vw(t) ·∆t, (3.7)

gε = −
∑
t

u̇(−t)� vw(t) ·∆t, (3.8)

where t denotes time, (−t) denotes time reversed, � denotes element-wise multipli-

cation, u̇ denotes the time derivative of u (computed in a finite-difference way), vw is

the adjoint wavefield (the back-propagation of errors), and ∆t denotes the discretized

time interval. As noted by Kurzmann et al. (2013) using the adjoint method intro-

duces high amplitude artifacts near the receivers that dominate the gradients. In

order to remove these high amplitudes, we first multiply the gradients by a 2d Gaus-
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sian surface in the xz-plane centered at the source location. The bandwidth of the

2d Gaussian equals a wavelength where the wavelength is computed using the char-

acteristic frequency of our survey and the velocity at the source location. We then

apply a Gaussian lowpass space-frequency filter following Taillandier et al. (2009)

with the choice of bandwidth so as to only allow wavelengths larger than or equal to

the characteristic wavelength of the model. The updates are,

∆σw = − 1

nw

nw∑
s=1

ασ gw,σ, (3.9)

∆ε = − 1

nw

nw∑
s=1

αε gε, (3.10)

where nw is the number of GPR common-shot gathers and ασ and αε are step-sizes

for each gradient.

Even with a true descent direction −gε, finding αε can be a very ill-posed inverse

problem by itself leading to negative step-sizes, overshoot of the solution ε∗ or a very

slow convergence. Overshooting the solution ε∗ can lead to our current values of ε to

fall outside the velocity interval determined by the stability conditions of our finite-

difference wave solver both in time (Courant et al., 1967) and space (e.g. numerical

dispersion).

For these reasons we choose to compute the step-size αε with a three-point parabola

approximation of the objective function Θs
w,ε in the direction of its gradient (Wright

& Nocedal, 1999). Each point used in the parabola approximation is the image of a

perturbed permittivity ε̂i under the objective function Θs
w,ε,

ε̂i = ε� exp(−ε� piκε · gε), i = 1, 2, 3, (3.11)
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where κε is a positive real number and pi is a fixed user defined percentage. At

each iteration and for each source, κε is chosen automatically in order to enforce the

perturbed permittivity to lie within a certain range of possible values, i.e. within the

stability velocity interval imposed by our wave solver (Courant et al., 1967) and we

choose κε to be as large as possible. We leave the details of finding κε in Appendix

A. Because at a given iteration we already have a value of Θs
w,ε for the current

permittivity (i.e. with no perturbation), we choose pi to be 0, 0.05 and 0.5. We

proceed by computing Θs
w,ε(ε̂i; do,sw ) for i = 1, 2, 3 and then fitting a parabola

through these points from which we analytically compute where the argument takes

its minimum value: αε.

The computational cost of finding αε imposes one extra run of our forward model

(equation 3.2) from what is done in Ernst et al. (2007b) and Meles et al. (2010), but

gives more accurate values for the descent direction. We note that our search for κε

guarantees the permittivity values always lie within the stability conditions of our

wave solver: both for the perturbations ε̂i and the updated ε.

Because GPR is only sensitive to conductivity through attenuation and weak

reflections, in the case of strong attenuation the GPR data might not have enough

information to constrain a parabolic shape on Θs
w,σ in the vicinity of the current

parameters. We find the step-size ασ by first finding the largest possible real number

κw,σ for which the perturbation in the direction of −κw,σ gw,σ keeps the conductivity

within a prescribed range of possible values. We then take a small percentage (in the

order of 1%) of this value to be ασ.

In late iterations we find that the updates in equation 3.9 can lead to an oscillatory

exploration of the solution space. To mitigate this effect we impose a momentum mε
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(Rumelhart et al., 1986) to the descent direction ∆ε,

∆ε← ∆ε+mε ∆ε•, (3.12)

where ∆ε• is the update of the previous iteration. The value of mε is kept constant

throughout the inversion with a value of 25%.

At each iteration the updates are done in logarithmic scale in order to enforce the

physical positivity constraint on both ε and σ (Meles et al., 2010),

ε← ε� exp(ε�∆ε), (3.13)

σ ← σ � exp(σ �∆σw). (3.14)

As noted by Meles et al. (2010), if the conductivity and permittivity reflections vary

significantly it is not always convenient to compute the gradients and update under

the same forward run. In lieu of this observation, in each iteration we first compute

equation 3.2, we then compute ∆ε and update ε, we then compute our synthetic data

(equation 3.2) again, compute ∆σw and update σ. In total, for each iteration for

one source we compute equation 3.2 four times and equation 3.6 two times, which in

total accounts for six forward models.

Assuming the source wavelet is known for all sources in our GPR experiment, we

give the algorithm for computing the updates ∆ε and ∆σw in Figure 3.2. The full

GPR inversion algorithm is given in Figure 3.4. The initialization of our algorithm

consists in defining all constants used in our inversion and inputing a good initial

guess for both permittivity and conductivity.
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Figure 3.2: Algorithms for computing the updates ∆ε and ∆σw.
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3.2.2 ER inversion

The physics of the ER experiment are given by the steady state Maxwell’s equations

where Ohm’s law holds (Pidlisecky et al., 2007),

−∇ · σ∇ϕ = i(δ(x− s+)− δ(x− s−)), (3.15)

where ϕ is the electric potential, i is the current intensity, s± is the source-sink

location, and σ is the electrical conductivity. Note that under our assumptions the

conductivity in equation 3.15 is the same as in equation 3.1. We write the discretized

version of equation 3.15 as,

Ldcϕ = sdc,

dsdc = Mdcϕ,

(3.16)

where Ldc is the discretized differential operator of equation 3.15, ϕ is the electric

potential (a vector of size nxnz× 1), sdc is the source term (a vector of size nxnz× 1),

Mdc is the measuring operator that computes observed voltages (a matrix of size

ndsdc
×nxnz where ndsdc

denotes the number of measured voltages), and dsdc is the data

of the experiment for one source (a vector of size nddc × 1).

We follow Dey & Morrison (1979) and use a finite volume method to build the

discretized operator Ldc, a sparse banded matrix of size nxnz × nxnz whose entries

are a function of σ and the boundary conditions. Neumann boundary conditions are

applied on the air-ground interface, and Robin boundary conditions are applied in the

subsurface (Dey & Morrison, 1979). By specifying Neumann boundary conditions on

the air-ground interface and Robin boundary conditions in the subsurface, the matrix

Ldc is directly invertible. The source vector sdc is sparse having only ±1 entries at
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the source and sink positions.

In order to directly compare the sensitivities of both experiments, we use the same

discretized grid for both the GPR and the ER forward models. The spacings ∆x,∆z

and ∆t are determined by the Courant-Friedrichs-Lewy condition (Courant et al.,

1967) with a user imposed interval of possible velocities in order for the GPR forward

model to be numerically stable.

We formulate our ER inversion algorithm by finding σ∗ that satisfies,

σ∗ = arg min Θdc(σ; dodc), (3.17)

where dodc is all of the ER data. We have,

Θdc =
1

ns

∑
s

Θs
dc, (3.18)

where s indexes the source, ns denotes the total number of sources, and

Θs
dc =

||edc||22
||do,sdc ||22

. (3.19)

We denote do,sdc the observed data for one source and edc = dsdc − do,sdc the residual

of the modeled and observed data. In order to find the model update ∆σdc that

minimizes Θs
dc we first find the gradient of Θs

dc with respect to σ. Let ∇σ be the

vector of size 1 × nxnz whose entries are the partial dereivatives with respect to σ.
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We compute gdc using the adjoint potential field vdc,

L>dc vdc = M>
dc edc,

gdc = Sdcvdc,

(3.20)

where gdc and vdc are vectors of size nxnz × 1 and Sdc = −((∇σLdc)ϕ)> is a matrix

of size nxnz × nxnz. We leave the details of this derivation for Appendix B.

Similarly to gε and gw,σ, the gradient gdc exhibits strong amplitudes near the

sources and receivers. We use the approach of Taillandier et al. (2009) to filter out

these artifacts by applying a lowpass space-frequency domain Gaussian filter with a

choice of radius so as to only allow wavelengths larger or equal than the smallest

source-receiver spacing.

Once the gradients for all sources have been computed the update is,

∆σdc = − 1

ndc

ndc∑
s=1

αdc gdc, (3.21)

where ndc is the number of ER experiments, and αdc is a particular step size for

each gdc. The step-size computations are done following Pica et al. (1990), where

a perturbation σ̂ of σ in the direction of the gradient gdc is needed. We find the

optimal perturbation parameter κdc such that,

σ̂ = σ � exp(−σ � κdc gdc), (3.22)

using the same algorithm (but separately) as with the GPR inversion. Similarly to

the GPR permittivity sensitivity, we add a momentum in the order of 10% of the

previous iteration update to the current update ∆σdc to avoid an oscillatory search
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of the solution space (Rumelhart et al., 1986),

∆σdc ← ∆σdc +mdc ∆σdc •, (3.23)

where ∆σdc • is the update from the previous iteration and mdc is kept constant

throughout the inversion. At each iteration the update is done in logarithmic scale

in order to enforce the physical positivity constraint on σ,

σ ← σ � exp(σ �∆σdc). (3.24)

We give the algorithm for computing the update ∆σdc in Figure 3.3. The full ER

inversion algorithm is given in Figure 3.4. The initialization of our algorithm con-

sists in defining all constants used in our inversion and inputing an initial model for

conductivity.

3.3 Joint inversion

We formulate our GPR and ER joint inversion algorithm by finding parameters ε∗

and σ∗ that satisfy,

{ε∗,σ∗} = arg min
1

2
(Θw,ε(ε; dow) + Θw,σ(σ; dow)) + Θdc(σ; dodc). (3.25)

We optimize equation 3.25 by joining the updates ∆σw and ∆σdc obtained by equa-

tions 3.9 and 3.21 respectively. Since ∆σw and ∆σdc generally vary in magnitude, in

order for the updates to share their different spatial sensitivities, we first normalize

them by their largest amplitude and then add them together with scalar weights aw
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Figure 3.3: Algorithm for computing the update ∆σdc.
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Figure 3.4: Inversion algorithms for a GPR and b ER.
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Table 3.2: Reference for the notation used in the discretized inverse prob-
lems. Symbols common in both GPR and ER experiments are stripped
from their subscripts to avoid clutter.

Symbol Meaning Note
ε Discretized electrical relative permittivity
σ Discretized electrical conductivity
L Discretized differential operator
s Discretized source
M Discretized measuring operator
d Synthetic data
e Residual of synthetic vs observed data Used for
Θ Objective function GPR and ER
v Discretized adjoint field
g Gradient of objective function
α Step size for g
κ Perturbation parameter used to find α
m Momentum parameter
u Electric wavefield on the y component
u̇ Finite-difference time derivative of u
ε̂ Perturbed permittivity Only
∆σw GPR conductivity update GPR
∆ε GPR permittivity update
∆ε• GPR permittivity update from the previous iteration
ϕ Discretized electric potential
Sdc The matrix −((∇σLdc)ϕ)>

σ̂ Perturbed conductivity Only
∆σdc ER conductivity update ER
∆σdc • ER Conductivity update from previous iteration
∆σ Joint conductivity update
aw Weight to regulate ∆σw Used for
adc Weight to regulate ∆σdc the joint
h Weight to regulate aw and adc update
c Step size for ∆σ
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and adc,

∆σ = aw ∆σw + adc ∆σdc, (3.26)

then normalize ∆σ by its largest amplitude and finally write,

∆σ ← c∆σ, (3.27)

where c is the geometric mean of the maximum amplitudes of ∆σw and ∆σdc prior

to normalization. See Figure 3.5a for a summary of this procedure. The choices

for weights aw and adc are made with the paradigm of letting both updates ∆σw

and ∆σdc always contribute to ∆σ in proportion to their objective function value

at a given iteration: if the objective function value of one is smaller than the other,

then the one with the smaller value should be more heavily weighted. The ad-hoc

computation of aw and adc is,

aw =


1 if hΘw,σ ≤ Θdc

1√
|hΘw,σ−(Θdc−1)|

if Θdc < hΘw,σ,

adc =


1 if Θdc ≤ hΘw,σ

1√
|hΘw,σ−(Θdc+1)|

if hΘw,σ < Θdc,

(3.28)

where h is a positive number that further regulates the relative weight of GPR vs

ER sensitivities. The value of h modulates how much we weigh each sensitivity:

an increasing value of h decreases weighting of ∆σw, while a decreasing value of h

increases the weighting of ∆σw.

Moreover, the choice of h over each iteration manages two aspects of the inversion:
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(a) at early iterations GPR data gives better sensitivity of sharp boundaries at shallow

depths compared to the ER data so ∆σw should be weighed more, however at later

iterations ER data gives better sensitivity overall so ∆σw should be weighed less.

(b) We interpret an increase of Θdc (or Θw,σ) with respect to the last iteration as

a “cry for help” and so ∆σw should be weighed less (or more). Figure 3.6 shows

the expected “bowtie” shape over iterations of aw and adc that drives the physical

sensitivities of our data in the parameter-space search-path. At early iterations the

GPR data first resolves the structure of the model while the ER data struggles to

resolve conductivity at depth, so the weight aw is given a larger value than adc. At

later iterations, once the GPR data has resolved enough structure the roles of aw and

adc are reversed.

Because the geometries of the hyper-surfaces defined by Θw,σ and Θdc as a function

of σ are not known, we ensure the values of aw and adc comply with the bowtie shape

by enforcing emergent conditions (Cucker & Smale, 2007) that act individually on

the magnitude of h, but when used together they interact into forming the bowtie

shape. The conditions are (see Figure 3.5b for quick reference),

(0) We first choose a value of adc for the first iteration to be positive and smaller

than 1 and force the first choice of h to comply with this initial value of adc.

(1) As the iterations proceed, if adc is decreasing we increase h by a fixed ratio ȧdc,

h← ȧdc h.

Note that adc can only decrease if aw is 1.

(2) If aw decreases we further force the descent of aw increasing h by a fixed ratio
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ȧw,

h← ȧw h.

Note that the decrease of aw begins when adc reaches 1.

In order to ensure the “cries for help” are listened at each iteration we enforce,

(3) If the value of Θdc increases with respect to the last iteration we increase h by a

fixed ratio Θ̇dc,

h← Θ̇dc h.

(4) If the value of Θw,σ increases with respect to the last iteration we decrease h by

a fixed ratio Θ̇w,

h← Θ̇w h.

In summary, the weight h regulates the current iteration’s choice of confidence over

the sensitivities ∆σw and ∆σdc, while the weights ȧdc, ȧw, Θ̇dc and Θ̇w regulate how

h changes over each iteration. From conditions (1)-(4) we have,

ȧdc > 1 Θ̇dc > 1

ȧw > 1 Θ̇w < 1.

(3.29)

Because each condition (1)-(4) is tested at each iteration, more than one condition

can be activated in the same iteration although not all combinations are possible,

for example if (1) is activated then (2) is not since adc descending implies aw is

1. Out of all the possible combinations of repeated conditions of (1)-(4), only four

are ambiguous in whether h increases or decreases, see equation 3.30. We solve the

ambiguities involving GPR and ER terms by imposing an increase on h when they
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occur since this gives a higher weight on ∆σdc which is the update that is directly

sensitive to the conductivity.

ȧdc Θ̇dc Θ̇w > 1

ȧdc Θ̇w > 1

ȧw Θ̇dc Θ̇w > 1

ȧw Θ̇w ≥ 1

(3.30)

In practice we treat h as an invisible variable and only worry about finding values for

ȧdc, ȧw, Θ̇dc and Θ̇w which remain constant throughout the inversion. These values

are found empirically. Table 3.3 displays the designated roles of values ȧdc, ȧw, Θ̇dc

and Θ̇w. Table 3.4 show the values used in our inversions for both low and high-

conductivity scenarios.

The update for optimizing equation 3.25 is,

σ ← σ � exp(σ �∆σ). (3.31)

We summarize the procedure of computing the joint update ∆σ together with weight

h in Figure 3.5.

3.4 Examples

3.4.1 Subsurface models

We illustrate our algorithm with two possible scenarios of the subsurface: one with

low conductivity (σ between 1 and 4mS/m) and one with high conductivity (σ be-

tween 5 and 20mS/m) as shown in Figure 3.8. The permittivity is kept equal (but

assumed unknown) in both scenarios. We place a box of size 1 × 1m present in both
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Figure 3.5: Algorithm for computing the update ∆σ as explained in Sec-
tion Joint Inversion.
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Figure 3.6: Diagram of weights aw and adc as a function of iterations. An
initial value for adc is chosen following condition (0). If adc decreases over
iterations, or Θdc increases, condition (1), or (3), are activated to increase
adc. Once adc reaches the value 1, aw is forced to steadily decrease with
condition (2). If Θw,σ increases over iterations, condition (4) is activated
and aw is increased but regulated by condition (2).

Table 3.3: Parameters for our joint inversions that were found empirically
and remained fixed throughout the inversions. An increase in h favors
∆σdc more than ∆σw. Conversely, a decrease in h favors ∆σw more than
∆σdc.

Parameter Role Turn-on
initial adc Initial weight on ∆σdc Only in first iteration
ȧdc Increase h and adc Only when aw = 1
ȧw Increase h, decrease aw Only when adc = 1

Θ̇dc Increase h, weigh ∆σdc more Always

Θ̇w Decrease h, weigh ∆σw more Always
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Figure 3.7: Joint inversion algorithm as explained in Section Joint Inver-
sion.
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Table 3.4: Inversion parameters used for the low and high-conductivity
scenario.

Parameter Low σ High σ
initial adc 0.85 0.9

ȧdc 4 2
ȧw 2 1.5

Θ̇dc 6 20

Θ̇w 0.9 0.9

permittivity and conductivity, and a reflector at depth with a 1m thickness present

only in the permittivity. We invert for both permittivity and conductivity starting

from homogeneous background models: σ = 1mS/m and σ = 4mS/m for the low and

high conductivity scenarios respectively and ε = 4 for both scenarios.

The choice for the size of the box in our models is intended to stress our inversions

as much as possible: large enough to have two wavelengths of the electromagnetic

wave pass through, but small enough to be just within the minimum resolution of

our ER acquisition sensitivity. We show the usefulness of the method on an explo-

ration scenario relevant for field applications and simple enough for interpretation

and assessment of our method.

3.4.2 Data acquisition

The GPR data are synthetically generated by applying 20 equally spaced sources

(with a Ricker wavelet signature of 250MHz) on the air-ground interface with source-

receiver spaced a wavelength away (≈ 0.5m) and receiver-receiver distance a quarter

of a wavelength away all along the air-ground interface. The ER data are also syn-

thetically generated using 17 electrodes placed on the air-ground interface with one

meter spacing between them and acquiring all possible dipole-dipole and Wenner
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array configurations.

3.4.3 Noise

We add white noise to our synthetic GPR common-source gathers with amplitude

10% of the standard deviation of each common-source gather (see Figure 3.9). We

then lowpass the data up to 70% of our Nyquist frequency, which is where most of the

noise spectra is shared with our noise-free data. Since the synthetic ER data do not

follow a Gaussian distribution, we first cluster the data and then add white noise to

each cluster with an amplitude of 10% of the standard deviation of each cluster (see

Figure 3.10). We note that the noisy dipole-dipole array gathers exhibit a significant

lower signal-to-noise ratio than the noisy Wenner array gathers, although we still use

all of our noisy data for our inversions.

3.4.4 GPR inversions

In Figure 3.11a we see the recovered permittivity using just GPR data for the low

conductivity scenario. We see the box correctly imaged and with values close to our

true model while the bottom reflector is rightly imaged but the parameter value is

not accurate because of amplitude loss in the data due to attenuation and two-way

travel. We also observe low spatial frequency artifacts as a result of our surface source

illumination with amplitudes dependent on the signal-to-noise ratio: with larger noise

levels, the artifact amplitudes are recovered with a value closer to the permittivity

of the box anomaly. For the high conductivity scenario (Figure 3.12a) the amplitude

loss in the GPR data is even greater yielding speckle artifacts near the box of only

7.5% between the permittivity of the background and the box.

The lack of amplitude information due to attenuation of the GPR data is also

appreciated in the recovered conductivities using only the GPR inversion as seen
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in Figure 3.13a for the low conductivity and even more so in Figure 3.14a for the

high conductivity. We note that because of the non-uniqueness between reflectivity

caused by conductivity and that caused by permittivity, the GPR conductivity solu-

tion detects an artifact apparent boundary at the bottom of the model. High spatial

frequency artifacts are also present in the recovered low conductivity.

3.4.5 ER inversions

The ER recovered conductivities shown in Figures 3.13b and 3.14b for the low and

high-conductivity scenarios tell a different story from the GPR inversions: they have a

more accurate amplitude detection, contain more low spatial frequencies (both in the

detection of the box and the artifacts of the inversion), and because the ER data are

directly and only sensitive to conductivity they do not contain the bottom reflector.

We note however that because of our one-sided surface acquisition geometry and the

inherent depth resolution of ER, the amplitude of the box decays in depth.

3.4.6 Joint inversions

The joint inversion recovered conductivities for the low and high scenarios are shown

in Figures 3.13c and 3.14c respectively. We note improvements in the parameter

accuracy and spatial resolution of the recovered conductivities compared to the GPR

and ER inversions as well as a better depth resolution of the box. In Table 3.5 we

quantify the improvement of our joint inversion by dividing the zero-lag crosscorre-

lation of the true and recovered conductivities with the zero-lag autocorrelation of

the true conductivities. In both the low and high-conductivity scenarios we see an

improvement over the separate GPR and ER inversions. With respect to the GPR

results, we improve by 3% and 5.4% in the low and high-conductivity scenarios re-

spectively. With respect to the ER results, we improve by 0.11% in both the low and
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high-conductivity scenarios.

Because of the non-uniqueness of conductivity and permittivity reflections in the

GPR data, our joint inversion has the caveat of detecting apparent boundaries in the

conductivity solution. We also note artifacts in our joint inversion conductivities rem-

iniscent of the artifacts in the GPR recovered permittivity around the box-anomaly

(Figure 3.11a) although because of our weighting scheme that penalizes ∆σw in later

iterations, these artifacts diminish amplitude as the number of iterations increase.

In the low conductivity scenario, Figure 3.15a shows that the GPR data domi-

nates ∆σ for the first 4 iterations resolving sharp boundaries at shallow depths that

∆σdc is not yet sensitive to. However as iterations increase, ∆σw has contributed

enough sensitivity for ∆σdc to resolve at depth and so the ER data dominates the

inversion resolving the box and smoothing GPR high spatial frequency artifacts while

still letting ∆σw contribute to the inversion. As shown in Figure 3.15b the first 20

iterations resolve the data at a faster pace than in later iterations.

Similar to the low-conductivity scenario, the ER data dominates most of the

inversion as can be seen in Figure 3.16a. Figure 3.16b shows a similar decrease of Θdc

as in Figure 3.15b although Θw struggles to find a descent direction until the 40th

iteration where both Θw and Θdc take a final descending stretch.

Because of the lack of information about the subsurface in the GPR data due to

strong attenuation, the confidence of Θw in resolving the data is weak. The weak

confidence of the GPR data is also seen in the small curvature of Θw: the changes

in Θw are small compared to the low conductivity scenario (Figure 3.15b), and the

step sizes αε flip back and forth between positive and negative values throughout

the inversion (not shown). The lack of curvature in Θw for the high conductivity
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Table 3.5: Ratio of maximum zero-lag cross-correlation between recov-
ered and observed parameters for the low and high-conductivity scenarios.
Closer to 1 is better. The joint inversion outperforms the GPR and ER
recovered conductivities.

Inversion low σ high σ
GPR 0.8685 0.8432
ER 0.8964 0.8963
Joint 0.8975 0.8974

scenario leads us to conclude that incorporating ER sensitivity to ∆σw is not enough

to resolve permittivity.

In order to increase the resolution of permittivity values in the case of high con-

ductivity, four possible solutions could be 1) using the low frequency information of

the GPR in either a stepped frequency approach as in Meles et al. (2012); 2) changing

the objective function in early iterations as in Bozdağ et al. (2011) or Ernst et al.

(2007b) to allow for lower frequency content to be imprinted in both ∆ε and ∆σw; 3)

assuming the permittivity and conductivity geometric features are similar and using

a cross-gradient approach as in Haber & Gazit (2013); Gallardo & Meju (2003) or 4)

a joint update approach similar to equation 3.26 where instead of joining the GPR

and ER conductivity sensitivities we join the permittivity (∆ε) and joint conductivity

(∆σ) updates.

In Chapter 4 we improve the resolution of our algorithm by incorporating the

envelope of the GPR data and using the cross-gradients constraint in a single objective

function.
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Figure 3.8: Subsurface models used for our inversions. The size of the
box is 1×1m. a The permittivity background, bottom reflector and box
have values of 4, 9 and 6 respectively. The conductivity background and
box have values of 1 and 4 mS/m for the low conductivity b and 4 and
20 mS/m for the high conductivity c respectively. An example of GPR
receivers and source are depicted in green and red in b and ER electrodes
are depicted in green in c.
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Figure 3.9: GPR data for one source noise free and with added noise.

Figure 3.10: a All ER data noise free and the clusters used for adding
noise depicted with symbols +, •, and ×. b Pseudo-section of a dipole-
dipole survey noise free and c with added noise.
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Figure 3.11: Recovered permittivity for the low-conductivity scenario with
just GPR data a and with GPR and ER data b.
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Figure 3.12: Recovered permittivity for the high-conductivity scenario
with just GPR data a and with GPR and ER data b.
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Figure 3.13: Recovered low conductivity using a just GPR data, b just
ER data, and c both GPR and ER data. Each inversion was run for 50
iterations.
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Figure 3.14: Recovered high conductivity using a just GPR data, b just
ER data, and c both GPR and ER data. Each inversion was run for 50
iterations.
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Figure 3.15: Update weights history over iterations for the low-
conductivity scenarios a and normalized objective functions history over
iterations d.
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Figure 3.16: Update weights history over iterations for the high-
conductivity scenarios a and normalized objective functions history over
iterations d.
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3.5 Conclusions

We have developed a joint inversion algorithm for recovering subsurface frequency

independent electrical permittivity and conductivity with surface acquisition and no

assumed geometry or structure of the target media that enhances the sensitivity of the

ground penetrating radar (GPR) and electrical resistivity (ER) data by introducing

low and high spatial frequency information while honoring the physics of Maxwell

equations. Our joint inversion approach improves both the frequency independent

permittivity and conductivity spatial and amplitude resolution of the target media

compared with just GPR or ER inversions. Moreover, we find that GPR effectively

supports ER in regions of low conductivity while ER supports GPR in regions with

strong attenuation.

We perform an iterative non-linear inversion where the GPR and ER sensitivities

are computed with the adjoint method and the conductivity GPR and ER sensitivi-

ties are joined with an ad-hoc method with the paradigm of letting both sensitivities

always contribute to the inversion in proportion to how well their respective data

are being resolved in each iteration. Our weighting method makes use of five fixed

user defined values that further regulate the GPR and ER conductivity sensitivities

automatically in each iteration, and that rely on the physical resolution of the GPR

and ER experiments. Because our ad-hoc method to join the GPR and ER sensitivi-

ties is based on the value of the objective function values and the physical resolution

of our geophysical methods, we suggest it can be used for joining other geophysical

exploration methods where the physics involved play a similar role, e.g. active source

seismic and gravity which are linked by density.

We assume the subsurface media is linear, isotropic, two dimensional and with
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frequency independent electrical parameters. In an effort to relax a-priori knowledge

of the subsurface we do not use any petrophysical relationships throughout our work.

These assumptions were chosen as a compromise between ease of computation cost

and relevance with field data scenarios. Moreover, we note that for a variety of earth

materials the DC and effective conductivity differ by a factor of less than an order of

magnitude. Our assumptions enable us to directly couple the electrical conductivity

sensitivities that the GPR and ER data are sensitive to. While frequency independent

parameters are not realistic in general, it serves as a starting point for testing our

algorithm and motivates the development of forward models and inversion schemes

that do take into account frequency dependency of electrical parameters.

In order to benchmark our algorithm we simulate GPR and ER data on two

subsurface models, one with low (in the order of 10mS/m or less) and one with high

(in the order of more than 10mS/m) conductivity. The low conductivity model was

designed to test our algorithm in a case where the recovered permittivity is sufficiently

resolved by the GPR data alone while the conductivity is only meaningfully recovered

by the ER data. The high conductivity model was designed to test for a case where

the GPR data alone cannot resolve a meaningful image of either permittivity or

conductivity. Sources and receivers were placed on the air-ground interface simulating

a real-data acquisition scenario for both GPR and ER experiments.

In both cases our joint inversion approach improves the resolution of spatial di-

mensions and amplitude of the target conductivity from just GPR and ER inversions.

The spatial detection is measured as a ratio of zero-lag cross-correlations between true

and recovered parameters. It is improved by 3% and 5.4% with respect to the GPR

inversions in the low and high-conductivity scenarios respectively, and by 0.11% in
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both scenarios with respect to the ER inversions.

Because of the non-uniqueness between permittivity and conductivity reflections

in the GPR data, our joint inversion scheme introduces apparent boundaries in the

recovered conductivity that are not corrected with the ER data. High spatial fre-

quency artifacts of the GPR sensitivity to the conductivity are mapped into our joint

inversion solution, although these artifacts can be diminished in amplitude if the in-

version is run for more iterations allowing for the low spatial frequency ER sensitivity

to correct them. In both low and high conductivity scenarios the recovered permit-

tivity is not enhanced by using the ER sensitivity to conductivity, which can be of

particular interest in the high conductivity case where permittivity is poorly solved

by the GPR inversion.

Given the poor amplitude detection of the permittivity in the high conductivity

scenario, approaches to increase the permittivity solution should likely 1) exploit low

frequency content of the GPR data and 2) assume structural similarities of permit-

tivity and conductivity. A possible path to enhance low frequency sensitivity of the

GPR data could involve changing the objective function of the GPR inversion in

early iterations or sequentially increase the frequency content of the GPR data dur-

ing the inversion. If structural similarities between permittivity and conductivity are

assumed, possible paths to accomplish 2) could be joining the conductivity sensitivi-

ties of the GPR and ER data in a cross-gradient scheme, or with a similar approach

as presented in this paper for joining the GPR and ER conductivity sensitivities. In

Chapter 4 we address 1) and 2) by enhancing our joint inversion with the envelope

transform of the GPR data and cross-gradient constraints on both permittivity and

conductivity.
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Allowing for deeper spatial sensitivity for the ER experiment is equivalent to using

long one-sided surface acquisition. In order to recover low frequencies and enough

amplitude information from the GPR experiment, long one-sided surface acquisition

of multi-offset data are needed. Given that our joint update for the conductivity

assumes both updates are in the same spatial coordinates and with the same dis-

cretization, the cost for computing the GPR and ER forward models is increased

from conventional GPR or ER experiments and inversion schemes. As a result, long

offsets for both experiments are needed, yielding our approach best suited for shallow

subsurface investigation.

Inverting for subsurface electrical properties using full-waveform of GPR data

with data acquired on the surface is a new and emerging method. Choosing to

carefully study synthetic examples where the solution is known enables us to assess

the attributes and limitations of our method. This is an important step before using

field data with our method because, in general, the solution of subsurface electrical

parameters is unknown.
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CHAPTER 4:

ENHANCING LOW FREQUENCY AND

EXPLOITING STRUCTURAL SIMILARITIES1

Recovering material properties of the subsurface using ground penetrating radar

(GPR) in the presence of strong attenuation and weak low frequencies in the data

is a challenging problem. We propose three non-linear inverse methods for recover-

ing electrical conductivity and permittivity of the subsurface by joining GPR and

electrical resistivity (ER) data acquired at the surface. All methods use ER data to

constrain the low spatial-frequency of the conductivity solution. The first method

uses the envelope of the GPR data to exploit low frequency content in full-waveform

inversion and does not assume structural similarities of material properties. The sec-

ond method uses cross-gradients to manage weak amplitudes in the GPR data by

assuming structural similarities between permittivity and conductivity. The third

method uses both the envelope of the GPR data and the cross-gradient of the model

parameters. By joining ER and GPR data, exploiting low frequency content in the

GPR data, and assuming structural similarities between electrical permittivity and

conductivity we are able to recover subsurface parameters in regions where the GPR

data has a signal-to-noise ratio close to one.

1This chapter has been submitted to Geophysics and is currently under review. Domenzain
et al. (2019b)
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4.1 Introduction

Electrical properties in the subsurface such as electrical permittivity ε and conductiv-

ity σ, hold relevant information regarding short, medium and long-term human needs.

In many of these applications surface data acquisition of active source methods such

as electrical resistivity (ER) and ground penetrating radar (GPR) can prove to have

a lower and more feasible deployment cost when compared with borehole methods.

ER is sensitive only to electrical conductivity while GPR is sensitive to electrical

permittivity by reflectivity and velocity, and conductivity by attenuation and reflec-

tion of the excited electromagnetic wave. Full-waveform inversion (FWI) of GPR

data is an emerging technique for enhancing the resolution of electrical properties

with little a-priori knowledge of the subsurface geometry with the caveat of needing

an initial ray-based tomography for robust initial models (Ernst et al., 2007a). How-

ever, inverting with only surface acquired GPR data remains a challenge and thus

limits most of the current applications in which GPR is commonly used.

Similar to seismic full-waveform inversion, two main challenges that must be re-

solved for GPR-FWI are the lack of low frequencies and the presence of attenuation

in the data. Fortunately, ER can be used to enhance GPR because it is directly

sensitive to low spatial frequencies in electrical conductivity and is directly linked to

the GPR governing physics by Maxwell’s equations. In this work we combine the

two methods and make the assumption that electrical properties are not frequency

dependent. Although this is not realistic in general, in Chapter 3 we note that for

a variety of relevant earth materials, the (real) effective conductivity and the DC

conductivity differ by a factor of less than 5. Hence, assuming frequency independent

electrical parameters serves as a starting point to test the enhancement of the spatial
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resolution in our inversions.

In Chapter 3 we developed a joint inversion scheme of GPR and ER data that uses

the full physics of Maxwell’s equations. The inversion accounts for the sensitivities of

GPR and ER data in each iteration of an adjoint method based inversion. We tested

our joint inversion scheme in two synthetic examples showing enhancements when

compared to individual GPR and ER inversions. The recovered conductivity was

improved through joint inversion because the ER data improved amplitude resolution

and the GPR constrained high spatial-frequency content.

In this work we address joint inversion of GPR and ER data when the conductivity

in the subsurface is strong. Unfortunately, if the attenuation is too strong the GPR

data will miss reflection events that hold meaningful information of the subsurface. In

this situation we find that even though the recovered conductivity is better resolved by

using both GPR and ER data, the recovered permittivity lacks the correct amplitude

and misses long wavelength resolution.

Fortunately, methods developed for seismic FWI (Bozdağ et al., 2011; Liu &

Zhang, 2017) can be used to enhance low frequency content in GPR-FWI. In the

context of seismic FWI it is well known that low frequencies in the waveform data

help the inversion avoid local minima (Virieux & Operto, 2009; Baeten et al., 2013).

In Bozdağ et al. (2011) the authors propose using the analytic signal of the observed

waveform in order to isolate the instantaneous phase and amplitude (i.e. envelope)

information of the data and modify the FWI objective function accordingly. In Liu

& Zhang (2017) the authors join first arrival travel-time with early arrival envelope

data to build a rich low spatial-frequency initial velocity model that is then used

in the FWI routine. Both works find that the low frequency content of the envelope
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waveform data is good for enhancing the low frequency spatial content of the recovered

velocity. In this work we use the envelope waveform data of GPR and further join it

with ER data to alleviate low spatial frequencies in both electrical permittivity and

conductivity.

Inversion methods that assume structural similarities of the target subsurface pa-

rameters (Haber & Oldenburg, 1997; Gallardo & Meju, 2003) can be used to further

improve our joint inversion algorithm by letting the ER data inform the GPR data

in regions of high attenuation. Assuming structural similarities in target subsur-

face parameters allows different geophysical data with varying spatial and physical

sensitivities inform each other where to look for a solution that more accurately re-

sembles reality if the structural similarity holds true. In Gallardo & Meju (2003)

the authors choose the cross-gradient operator as a structural constraint and success-

fully apply it to real seismic and ER data. In this work we show that by assuming

structural similarities between electrical permittivity and conductivity we can use the

cross-gradient operator for filling in amplitude and spatial-frequency content to our

solutions while still using forward and inverse models that take into account the full

physics of Maxwell’s equations.

Since then different types of geophysical data have been used in this context

(Gallardo & Meju, 2007; Fregoso & Gallardo, 2009; Gross, 2019). Most relevant

to our study are the works of Linde et al. (2006) and Doetsch et al. (2010) which

use borehole GPR and ER data to solve for electrical permittivity and conductivity.

All of these works rely on a linearization of one or both forward models and clear

access to the sensitivity matrices of the data, which in the case of time-domain FWI

the latter is computationally expensive. In Hu et al. (2009) the authors combine
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seismic and controlled-source electromagnetic data to solve for compressional velocity

and electrical conductivity in a Gauss-Newton inversion while enforcing the cross-

gradient constraint. They employ adjoint based methods for computing the sensitivity

matrices of the data with the computational burden of storing and inverting the

Hessian of the objective functions. In this work we compute the gradients of the

objective functions using adjoint based methods and relieve the need to store and

compute the Hessian of the objective functions.

We begin with a brief review of the physics of the forward models for GPR and

ER and objective functions for the GPR and ER inversions. Then we review our

joint inversion scheme from Chapter 3 and define three new joint inversion schemes

designed to manage attenuation and enhance low frequencies. Finally we test our

joint inversions on synthetic subsurface models designed to challenge the spatial and

amplitude resolution of GPR and ER sensitivities.

4.2 GPR and ER forward models and inversions

We briefly recall the governing equations, forward models and objective functions

for the GPR and ER experiments. Our physical models assume isotropic physical

properties and a 2d subsurface geometry where the parameters are constant along

the y-axis. These assumptions are made for ease of computations of our forward

models and not crucial for our inversion schemes. Both the GPR and ER forward

models are discretized on the same computational grid. Gradients of the objective

function with respect to the parameters are given in Chapter 3 and a full discussion

is found in Chapter 3.
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4.2.1 Ground penetrating radar

The physics of the GPR experiment are given by,
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(4.1)

where u is the electric field component in the y direction, (Hx, Hz) are the magnetic

field components in the x and z direction, Jy is the source term, ε is the electric per-

mittivity, σ is the electric conductivity and µo is the magnetic permeability which we

assume constant and equal to the permeability of free space. We discretize equation

4.1 by

u = Lw sw,

dsw = Mw u

(4.2)

where Lw is the discretized differential (time marching) operator of equation 4.1, u

is the electric field y component defined in space and time, sw is the source term,

Mw is the measuring operator, and dsw = Mw u is the data of the experiment, i.e. a

common-source gather. The discretized solution of equation 4.2 is described in detail

in Chapter 3.

We make note that from this point forward we will refer to operators and variables

in capital and lower case letters respectively, and distinguish continuous and discrete
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mathematics in normal and bold font respectively. A complete table of relevant

notation can be found in Table 4.1.

4.2.2 Electrical resistivity

The physics of the ER experiment are given by the steady state Maxwell’s equations

where Ohm’s law holds (Pidlisecky et al., 2007),

−∇ · σ∇ϕ = i(δ(x− s+)− δ(x− s−)), (4.3)

where ϕ is the electric potential, i is the current intensity and s± is the source-sink

position. We write the discretized version of equation 4.3 as,

Ldcϕ = sdc,

dsdc = Mdcϕ,

(4.4)

where Ldc is the discretized differential operator of equation 4.3, ϕ is the electric

potential, sdc is the source term, Mdc is the measuring operator that computes ob-

served voltages, and dsdc is the data of the experiment for one source. The discretized

solution of equation 4.4 is described in detail in Chapter 3.

4.2.3 GPR inversion

The GPR inversion algorithm finds parameters ε∗ and σ∗ that satisfy,

{ε∗,σ∗} = arg min Θw(ε, σ; dow), (4.5)

where the subscript ∗ denotes the imaged parameters and dow denotes all the observed

GPR data. From now on we denote the electrical permittivity and conductivity in
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Table 4.1: Reference for the notation used in the discretized inverse prob-
lems. Symbols common in both GPR and ER experiments are stripped
from their subscripts to avoid clutter.

Symbol Meaning Note
ε Discretized relative permittivity
σ Discretized conductivity
L Discretized differential operator
s Discretized source
M Discretized measuring operator Used for
d Synthetic data GPR and ER
e Residual of synthetic vs observed data
Θ Objective function
v Discretized adjoint field
g Gradient of objective function
α Step size for g
u Electric wavefield on the y component
u̇ finite-difference time derivative of u Only
∆σw GPR conductivity update GPR
∆ε GPR permittivity update
β GPR envelope weight
ϕ Electric potential
Sdc The matrix −((∇σLdc)ϕ)> Only
∆σdc ER conductivity update ER
∆σ Joint conductivity update
aw, adc Weights to regulate ∆σw and ∆σdc
c Step size for ∆σ Used for
∆στ,◦ Cross-gradient conductivity update the joint
∆ετ,◦ Cross-gradient permittivity update update
bε, bσ Weights to regulate ∆ετ,◦ and ∆στ,◦



71

bold font to emphasize these parameters are discretized and in matrix form. We have,

Θw =
1

ns

∑
s

Θs
w, (4.6)

where s indexes the sources, ns denotes the total number of sources, and

Θs
w =

||ew||22
||do,sw ||22

, (4.7)

where do,sw is the observed data for one source and ew = dsw − do,sw is the residual of

the modeled and observed data. The details for computing the gradient of Θw with

respect to ε and σ can be found in Chapter 3.

4.2.4 ER inversion

The ER inversion algorithm finds σ∗ that satisfies,

σ∗ = arg min Θdc(σ; dodc), (4.8)

where dodc is all of the ER data. We have,

Θdc =
1

ns

∑
s

Θs
dc, (4.9)

where s indexes the source, ns denotes the total number of sources, and

Θs
dc =

||edc||22
||do,sdc ||22

. (4.10)

We denote do,sdc the observed data for one source and edc = dsdc − do,sdc the residual of

the modeled and observed data. The details for computing the gradient of Θdc with
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respect to σ can be found in Chapter 3.

4.3 Joint inversions

4.3.1 Joint inversion of ER and GPR data

The objective function for our joint inversion is,

{ε∗,σ∗} = arg min Θw(ε, σ; dow) + Θdc(σ; dodc). (4.11)

We optimize 4.11 using gradient descent by first computing the descent directions for

σ: ∆σw and ∆σdc for both Θw and Θdc respectively, and then take a weighted average

of these descent directions to update σ; we then compute the descent direction ∆ε

and update ε. Figure 4.1 shows a code-flow diagram of this process. We follow

Chapter 3 and briefly explain how these updates and joining-weights are computed.

After all the gradients for all sources are computed the update directions are,

∆σw = − 1

nw

nw∑
s=1

ασ gw,σ, (4.12)

∆σdc = − 1

ndc

ndc∑
s=1

αdc gdc, (4.13)

∆ε = − 1

nw

nw∑
s=1

αε gε, (4.14)

where ασ, αdc, and αε are computed as in Chapter 3. After ∆σw and ∆σdc have been

computed they are joined by weights aw and adc,

∆σ = aw ∆σw + adc ∆σdc, (4.15)
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Figure 4.1: Inversion algorithm for Joint and JEN. We differentiate Joint
and JEN by how we compute ∆σw and ∆ε.
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Figure 4.2: Qualitative optimal shape for weights throughout iterations
for all inversion schemes (Joint, JEN, JOIX and JENX).

we then normalize ∆σ by its largest amplitude and finally write,

∆σ ← c∆σ, (4.16)

where c is the geometric mean of the maximum amplitudes of ∆σw and ∆σdc prior

to normalization. The driving purpose of the weights aw and adc is of letting both

updates ∆σw and ∆σdc always contribute to ∆σ in proportion to their objective

function value at a given iteration. Figure 4.2 shows the shape as a function of

iterations of the weights aw and adc should have: a bow-tie shape where at early

iterations aw dominates and at later iterations adc takes over. For a full discussion on

the weights aw and adc see Chapter 3.
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In order to enforce positivity constraints the parameters are updated as,

σ ← σ � exp(σ �∆σ), (4.17)

ε← ε� exp(ε�∆ε). (4.18)

We will refer to this inversion method (i.e. optimizing equation 4.11) as Joint

inversion (Joint).

4.3.2 Joint inversion of GPR envelope and ER data

We begin with a description of GPR envelope inversion which exploits the low fre-

quency content of the GPR data. Similar to GPR inversion we find ε∗ and σ∗ but

with the objective function Θ̃w (Bozdağ et al., 2011; Liu & Zhang, 2017),

{ε∗,σ∗} = arg min Θ̃w(ε, σ; dow, dow,a),

Θ̃w = Θw(ε, σ; dow) + Θw,a(ε, σ; dow,a),

(4.19)

where dow,a is the envelope of the observed data using the Hilbert transform and,

Θw,a =
1

ns

∑
s

Θs
w,a,

Θs
w,a =

||ew,a||22
||do,sw,a||22

,

(4.20)

where s indexes the sources. The subscript a denotes the instantaneous amplitude

(i.e. envelope), and the tilde denotes the sum of waveform and envelope sensitivity.

We optimize Θ̃w using gradient descent and regulate how much information Θw,a

contributes to the inversion by weighing the gradients of Θw and Θw,a differently.

The gradients of Θw,a with respect to the parameters ε and σ are computed using
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a full-waveform approach where a different adjoint source has to be used for Θw,a as

explained in Bozdağ et al. (2011) and reproduced in Appendix C for completeness.

For the sake of clarity we illustrate the optimization procedure for just ε. For one

source, let g̃ε, gε and gε,a be the gradients of Θ̃s
w, Θs

w and Θs
w,a, where the last two

are computed as in equations 3.8 and C.10 respectively. We have,

g̃ε = gε + βε gε,a, (4.21)

where the gradients gε and gε,a are assumed normalized in amplitude and βε is a fixed

scalar quantity for all sources and all iterations. The weight βε regulates how much

we boost the low frequency content of the observed GPR data. Our numerical results

show that a larger value of βε gives better depth resolution with the caveat of loosing

spatial resolution. However if the value of βε is too large the inversion might strongly

favor the low spatial-frequency content over the high spatial-frequency content, thus

not giving accurate results.

Once g̃ε has been computed we find the step-size αε as detailed in Chapter 3.

After g̃ε and αε have been computed for all sources the permittivity update is,

∆ε = − 1

nw

nw∑
s=1

αε g̃ε. (4.22)

Analogous to ε, the update for σ is,

g̃σ = gw,σ + βσ gσ,a, (4.23)

∆σw = − 1

nw

nw∑
s=1

ασ g̃σ, (4.24)
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where βσ is a fixed scalar quantity, gw,σ and gσ,a are computed as in equations 3.7

and C.9 respectively, and g̃σ is assumed normalized in amplitude. Similarly to βε a

larger value of βσ will result in better depth resolution.

The weights βε and βσ play an important role in recovering the subsurface param-

eters. In our numerical results we have found that when the GPR data has a small

signal-to-noise ratio it is beneficial to use values close to one and when the signal-to-

noise ratio is large, values smaller than one give better results. However, regardless

on how good the signal-to-noise ratio is in the GPR data using the ER data in a joint

inversion proves to have better results with comparatively stronger results when the

GPR data exhibits strong attenuation.

We define our joint inversion of GPR envelope and ER data by minimizing the

following objective function,

{ε∗,σ∗} = arg min Θ̃w(ε, σ; dow, dow,a) + Θdc(σ; dodc). (4.25)

At a given iteration of our joint inversion (whose work-flow is as in Figure 4.1) we

replace ∆ε and ∆σw by those computed in equations 4.22 and 4.24. The updated

values for σ and ε are made as in equations 4.17 and 4.18.

We will refer to this inversion method (i.e. optimizing equation 4.25) as Joint and

envelope inversion (JEN).

4.3.3 Joint inversion with cross-gradients

In this section we assume electrical permittivity and conductivity share structural

properties. At a given iteration we want the structure of ε to be shared onto σ and

vice-versa, and we want to do so by respecting the different concavities ε and σ may
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have. For this reason we choose the discrete cross-gradient operator τ as a measure

of structure (Gallardo & Meju, 2003),

τ(ε, σ) = ∇x ε×∇x σ, (4.26)

where ∇x denotes the discretized finite-difference spatial operator (∂x, ∂z), and min-

imize the objective function Θτ ,

Θτ (ε, σ) =
1

2
||τ ||22. (4.27)

Because we are modeling the full physics of both the GPR and ER experiments

and we compute the gradients of our objective functions using an FWI and adjoint

method approach, our method differs from the original method of Gallardo & Meju

(2003) because we do not compute the sensitivity matrices of our data. The result is

that at each iteration of our joint inversion (whose work-flow is shown in Figure 4.3)

we optimize equation 4.27 using a Gauss-Newton approach from which we only use

the master updates ∆στ,◦ and ∆ετ,◦. These updates are the cumulative sum of all

updates done in the Gauss-Newton optimization routine. The details of optimizing

equation 4.27 and computing ∆στ,◦ and ∆ετ,◦ are explained in Appendix D.

We observe that minimizing Θτ in this way 1) has good potential for a well posed

problem because the number of data points is equal to the number of unknowns (all

the points in our model domain), 2) is relatively cheap in computation time and

memory, 3) can be done by modifying both ε and σ or by keeping one fixed and

only modifying the other, and 4) enables us to port the information of minimizing

Θτ into our scheme for optimizing Θw and Θdc without having to use second order
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Figure 4.3: Inversion algorithm for JOIX and JENX. We differentiate
JOIX and JENX by how we compute ∆σw and ∆ε.



80

Figure 4.4: Illustration of cross-gradient possibilities. Given estimates ε
and σ in a and b, Θτ is minimized by updating both ε and σ in c and d,
updating ε and keeping σ fixed in e), and updating σ keeping ε fixed in f.
The dashed circles are constant markers for the widths and centers of the
Gaussian shapes in the given estimates of ε and σ.

optimization methods, i.e. the Hessians of Θw and Θdc.

Figure 4.4 gives an example of the different possibilities for minimizing Θτ outlined

in observation 3). Given hypothetical values for ε and σ in Figure 4.4a and 4.4b, at

a given iteration we minimize Θτ in three different ways. In Figures 4.4c and 4.4d we

update ε and σ, in Figure 4.4e) we fix σ and update ε, and in Figure 4.4f we fix ε

and update σ. Note that in this example both ε and σ have different concavities and

different shapes, i.e. σ is wider than ε, mimicking the different resolutions our joint

inversion is able to obtain from these two different parameters. The dashed circles

are of fixed radii in all panels and serve as markers for the underlying shapes.

When optimizing Θτ for both σ and ε as shown in Figure 4.4c and 4.4d both

σ and ε are modified and re-shaped to look more like one another since they are
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jointly updated. Figure 4.4e) shows ε expanding towards the outer circle, appearing

even more similar to σ in Figure 4.4b than that of Figure 4.4c. Figure 4.4f shows

σ contracting into the inner circle, appearing even more similar to ε in Figure 4.4a

than that of Figure 4.4d.

Depending on the subsurface material properties, the sensitivities of the GPR and

ER data might resolve better at earlier iterations either ε or σ. Whichever subsurface

parameter is best resolved first should inform the other about its structural properties.

Because of this reason and observations 1-4 above we choose to optimize Θτ twice

per iteration: once modifying σ and keeping ε fixed and a second time modifying ε

and keeping σ fixed. Each optimization has unique weights bσ and bε that identify

how much confidence we give to the current solutions of either ε or σ.

We define our joint GPR and ER with cross-gradient by minimizing the following

objective function,

{ε∗,σ∗} = arg min Θw(ε, σ; dow) + Θdc(σ; dodc) + Θτ (ε, σ). (4.28)

At each iteration of our joint inversion we begin with estimates of ε and σ. The joint

update for the conductivity first involves keeping ε fixed and computing the update

∆στ,◦ given by equation D.7 that optimizes Θτ . Then we compute the weight bσ and

scale ∆στ,◦,

bσ =

(
hσ
adc
aw
− (hσ − dσ) adc •

)
aw,

∆στ,◦ ← bσ ∆στ,◦,

(4.29)

where adc • is the value of adc in the first iteration, ∆στ,◦ is assumed normalized

in amplitude. The scalars dσ and hσ control how early and how much in the joint
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inversion should the structural information of ε is to be imprinted in σ.

Figure 4.2 depicts the optimal path of bσ throughout the iterations. During early

iterations bσ is small because not enough structure has been recovered on ε, but at

late iterations bσ is larger because ε is closer to its true solution. The value of bσ at a

given iteration is a measure of how much confidence we have on the structure of the

current solution for ε: the larger bσ the more confidence we have on ε.

We note that the upward trend of bσ over iterations can only be achieved if

hσ ≥ dσ > 0, (4.30)

which also forces bσ to plateau to the value hσ in late iterations so as to inhibit

dominance of the structural assumption and let the physics of our inversions assume

control. The purpose of dσ is to control the value of bσ for the first iteration: bσ =

dσ adc •.

The new update ∆στ,◦ is now passed to the GPR and ER optimization routines

before the step-sizes of the gradients are computed,

gw,σ ← gw,σ + ∆στ,◦,

gdc ← gdc + ∆στ,◦,

(4.31)

where both gw,σ and gdc are assumed normalized in amplitude. The step-sizes of the

gradients gw,σ and gdc are computed as described in Chapter 3 and the updates ∆σw

and ∆σdc are computed as in equations 4.12 and 4.13. Finally, the updated value for

σ is calculated as in equation 4.17.

Figure 4.3 shows a code-flow diagram of our joint inversion with the cross-gradient.
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The next step in our joint inversion is the structural update to ε which is analogous

to the update we just computed for σ. We keep σ fixed, compute ∆ετ,◦ given by

equation D.6, compute the weight bε and scale ∆ετ,◦,

bε =

(
hε
adc
aw
− (hε − dε) adc•

)
aw,

∆ετ,◦ ← bε ∆ετ,◦,

(4.32)

where ∆ετ,◦ is normalized in amplitude. The new update ∆ετ,◦ is now passed to the

GPR optimization routine before the step-size of the gradient is computed by

gε ← gε + ∆ετ,◦, (4.33)

where gε is assumed normalized in amplitude. The updated value for ε is calculated

by equation 4.18 where the update ∆ε is given in equation 4.14.

The weights hε and dε are not necessarily equal to hσ and dσ, but bε must follow a

similar shape as bσ (see Figure 4.2). Similar to bσ, the value of bε at a given iteration

is a measure of how much confidence we have on the structure of the current solution

for σ: the larger bε the more confidence we have on σ.

Because hσ and hε regulate how large bσ and bε can become over the course of

iterations, we propose two general rules on choosing hσ and hε based on how much

conductivity is present in the subsurface:

1. if conductivity is low hε should be small and hσ large,

2. if conductivity is high hσ should be small and hε large.

We recognize that in a real scenario we might not know a-priori the conductivity of
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the subsurface, however we can obtain a good enough approximation for determining

hσ and hε by observing the ER pseudo-sections and assessing how many reflection

events are visible in the GPR shot-gathers.

We will refer to this inversion method (i.e. optimizing equation 4.28) as Joint and

cross-gradients inversion (JOIX).

4.3.4 Joint inversion of GPR envelope and ER data with

cross-gradient

Now that we have enhanced our joint inversion of GPR and ER data (Domenzain

et al., 2019a) with an envelope objective function for the GPR data and with struc-

tural similarities of subsurface electrical properties, we develop a third method that

joins these two enhancements into one single inversion procedure. The joint GPR

envelope and ER data with cross-gradient inversion minimizes the following objective

function,

{ε∗,σ∗} = arg min Θ̃w(ε, σ; dow, dow,a) + Θdc(σ; dodc) + Θτ (ε, σ). (4.34)

At a given iteration we first compute ∆στ,◦ as in equation 4.29, and then add this

information to the gradients gw,σ and gdc normalized in amplitude given by equations

3.7 and 3.20,

gw,σ ← gw,σ + βσ gσ,a + ∆στ,◦,

gdc ← gdc + ∆στ,◦.

(4.35)

Once the gradients from all sources have been computed, we find the updates ∆σw

and ∆σdc as given by equations 4.12 and 4.13. Then we can compute ∆σ with

equation 4.16 and update σ as in equation 4.17.
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In order to compute ∆ε we first compute ∆ετ,◦ as in equation 4.32 and then add

this information to gε and gε,a normalized in amplitude as given by equations 3.8 and

C.10,

gε ← gε + βε gε,a + ∆ετ,◦. (4.36)

Once all gradients for all sources have been computed we find ∆ε as given by equation

4.14. Finally we update ε as in equation 4.18. The code-flow diagram in Figure 4.3

also describes this procedure with gradients computed by equations 4.35 and 4.36.

We refer to this inversion method (i.e. optimizing equation 4.34) as Joint, envelope

and cross-gradients inversion (JENX).

Choice of weights

In order to join the objective functions Θ̃w ,Θdc and Θτ we have introduced 11 weights.

Our joint inversion requires 5 (equation 4.15), the envelope inversion requires 2 (equa-

tions 4.21 and 4.23) and the cross-gradient inversion requires 4 (equations 4.29 and

4.32). Aside from the considerations given for each inversion routine, our numerical

results show that when all weights are non-zero they all influence each other. In some

cases the influence the weights exert on each other can lead to a different behavior in

the inversion than what was explained in the previous sections.

We observe that the conductivity solution influences the permittivity solution in

a stronger way than the permittivity solution influences the conductivity solution.

Moreover, because of the weak sensitivity the GPR data has on the conductivity,

obtaining a good solution for the conductivity is most efficiently achieved by joining

the ER data (Domenzain et al., 2019a). Therefore, we assume we are already satisfied

with the joint weights of equation 4.15 and focus on improving the permittivity and
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conductivity solution with weights for Θ̃w or Θτ .

Let us first assume the conductivity of the subsurface is low and the GPR data

holds enough information for a good solution of the permittivity. If we increase βσ or

hσ (in equations 4.35 and 4.29) to improve depth or spatial resolution in σ we pay

the price of degrading the spatial and amplitude resolution of ε.

Let us now assume the conductivity in the subsurface is high and the GPR data

does not hold enough information for a good estimate of the permittivity but the

ER data is enough for a good solution of the conductivity. Contrary to the above

scenario, in this case it is possible to exploit the good solution of σ and the low

frequency content of the GPR data in order to improve ε. Our approach consists

of over-weighing the envelope of the GPR data and relying on the cross-gradients to

regulate the excess of the low-frequency content. We choose negative weights bε and

bσ for the cross-gradient updates in order to trim off the low-frequency over-fit. The

use of negative weights on Θτ to counteract an overfit due to Θ̃w is a novel approach

to effectively using both of cross-gradients and the envelope transform as it takes into

account the sensitivities of both objective functions at each iteration. The descent

direction for the ε solution is ensured by computing the step-size for the updates with

a parabolic line search as explained in Chapter 3.

We recognize that all 11 weights were found by trial and error. In the low-

conductivity scenario we followed the qualitative guidelines explained in the previous

sections and shown in Figure 4.2. For the high-conductivity scenario the negative

weights (hε, dε, hσ and dσ) were chosen in order for bε and bσ to smoothly decrease

magnitude in absolute value as iterations progressed. This choice results in more

low-frequency content trim-off at early iterations and less at later iterations.
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4.4 Subsurface simulations

Recovering electrical permittivity and conductivity of the subsurface using full-waveform

inversion of surface acquired GPR data can be challenging if low frequencies are sparse

and attenuation is high. Furthermore if the subsurface geometry has velocity and at-

tenuation anomalies larger than a wavelength of the GPR signal the data might miss

amplitude information to accurately recover said anomalies. Recovering electrical

conductivity of the subsurface at depth using surface acquired ER data is limited

by needing large offsets. Furthermore if the subsurface has electrical conductivity

anomalies smaller than the receiver electrode distance, the ER data cannot spatially

resolve said anomaly.

Joining GPR and ER data (whose different sensitivities compliment each other

by sharing electrical conductivity) can better resolve subsurface electrical properties

given that both GPR and ER data hold enough information about the subsurface.

However if the subsurface is poorly conductive the ER data might have little sensitvity

to changes in the conductivity when compared to the GPR data. Conversely, if the

subsurface is highly conductive the ER data might have a larger sensitvity to changes

in the conductivity when compared to the GPR data.

In view of these observations and in an effort to keep our analysis as simple as

possible we choose to test our algorithms on two synthetically designed subsurface

scenarios: one with low and one with high electrical conductivity as shown in Fig-

ures 3.8a),b) and 3.8a),c). Both scenarios have the same subsurface geometry: an

electrical velocity and conductive box-anomaly in the center and a velocity reflector

at depth. The box is 1 × 1m wide: two wavelengths long but just within the limit of

our chosen ER experiment spatial resolution.
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Figure 4.5: True permittivity a and conductivity for the low b and high c
conductivity scenario. In a, GPR source and receivers layout for line # 7.
In b, all electrodes used for our ER experiment.
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Figure 4.6: Synthetic alluvial aquifer true and initial parameters. True a
and initial b permittivities. True c and initial d conductivities. The cyan
lines represent boreholes B1, B2 and B3 from left to right.

Finally, we implement our algorithm with all objective functions in a scenario

resembling an alluvial aquifer as shown in Figure 4.6a and c. Our synthetic aquifer

loosely follows the subsurface geometry of the Boise Hydrogeophysical Research Site

(BHRS) as imaged by Bradford et al. (2009b) and mapped by Barrash & Clemo

(2002). The electrical parameters resemble those of dry gravel on the shallow layer

and a variety of moist sands in the deeper layers, with wetter sands (but not saturated)

to the left of the model. The dipping shallow layer is at most two wavelengths deep

and just within our ER spatial resolution. The wet region acts both as a strong

reflector and as attenuative media for the radar data.

4.4.1 Experiments

Low & high conductivity

We model 250MHz GPR antennas with a Ricker wavelet source. We apply 20 equally

spaced sources on the air-ground interface with source-receiver near-offset of 0.5m

(approximately one wavelength) and receiver-receiver distance a quarter of a wave-
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length as shown in Figure 3.8a. For the ER experiment we use 17 electrodes placed

1m away from each other on the air-ground interface (see Figure 3.8b) and perform

all possible dipole-dipole and Wenner array configurations.

The synthetic GPR and ER data are then given random white noise with ampli-

tude of 10% of their standard deviation as explained in Chapter 3. See Figures 4.7

and 4.8 for the acquired data in both scenarios. Note that for the high-conductivity

scenario the signal in the GPR data is very weak, and near where the box reflection

event should be the signal-to-noise ratio is almost 1, while for the low-conductivity

scenario the GPR data shows strong reflections.

All inversions have a starting homogeneous model for both permittivity and con-

ductivity: a value of 4 for permittivity, and values of 1mS/m and 5mS/m for the low

and high-conductivity scenarios respectively.

Synthetic alluvial aquifer

We use the same acquisition geometry as for the low and high conductivity experi-

ments (see Figure 3.8a and Figure 3.8b). Given the complicated subsurface geometry,

we enhance the ER experiment with all possible Schlumberger arrays. All our data

are given random white noise analogous to the low and high conductivity scenarios.

To aid our analysis we place boreholes B1, B2 and B3 as shown in Figure 4.6a and c.

Figure 4.6b displays the initial permittivity and Figure 4.6d the initial conductiv-

ity used in our inversions. Our numerical experiments suggest a very strong sensitivity

to the first layer in our initial models throughout our inversions. We choose a smooth

initial model that accurately resolves the first air-wave refraction in the GPR data

and qualitatively follows the shape of the low-velocity region in length. Figure 4.9a
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Figure 4.7: GPR shot gather # 7 of the low and high-conductivity scenar-
ios and their respective best recovered parameters as given by Figures 4.10-
4.11 d for the low-conductivity and 4.12-4.13 d for the high-conductivity
scenario. Amplitudes are clipped to 1.5% of the maximum amplitude in
the data.
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Figure 4.8: ER data of the low a and high b conductivity scenarios and
their respective best recovered parameters.

gives the residual of the initial and observed GPR data: all reflection events below

the first air-wave refraction are present.

In Appendix D we give the details for choosing and building our initial models.

The strategy consists in perturbing the true model in two different ways. First, we

smooth it enough to loose depth resolution of the first layer and lateral resolution

of the low-velocity region. As a second approach, we smooth the true model below

the first layer but retain the true model for the first layer. The smoothing is done

with a Gaussian low-pass filter in the space frequency domain with a half-width of

0.8 1/m. The initial model in Figure 4.6b and d is an intermediate step between the

first and second perturbations. It is described in Appendix E. We note that although

demanding, these initial models are representations of the long wavelength structure

that could realistically be obtained from reflection tomography and careful analysis

of direct arrivals.
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Figure 4.9: Residuals of GPR shot-gather #7 for the synthetic alluvial
aquifer. Residual of initial model and observed in a, and of recovered and
observed in b. Recovered data correspond to the JOIX method. Ampli-
tudes are clipped to 1.5% of the maximum amplitude in the data.

4.4.2 Results

Low conductivity

Figures 4.10a and 4.11a show the recovered parameters for the low-conductivity case

using joint inversion of GPR and ER data and using the weights in the first column

of Table 4.2. We see the shape and amplitude of the box recovered in the permit-

tivity solution together with high spatial-frequency artifacts around the box mainly

due to one-sided acquisition and noise in the data. The recovered conductivity also

exhibits high spatial-frequency artifacts around the box and a strong amplitude from

the permittivity bottom reflector due to the GPR data being unable to distinguish

permittivity from conductivity reflections.

Figures 4.10b and 4.11b show the recovered parameters for the low-conductivity

case using joint inversion of GPR envelope and ER data and using the weights in the
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Figure 4.10: Recovered permittivity with low conductivity using Joint in
a, JEN in b, JOIX in c and JENX in d.
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Figure 4.11: Recovered low conductivity using Joint in a, JEN in b, JOIX
in c and JENX in d.
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Table 4.2: Inversion parameters for the low-conductivity scenario.

Low σ Joint JEN JOIX JENX
adc • 0.85 0.85 0.85 0.85
ȧdc 3 3 3 3

Θ̇dc 2 2 2 2
ȧw 4 4 4 4

Θ̇w 0.9 0.9 0.9 0.9
βε 0.25
βσ 0.25 1e-5
hε 0.01
dε 0.1
hσ 1e-3
dσ

second column of Table 4.2. In the recovered permittivity we note less high spatial-

frequency artifacts than in the joint inversion case (see Figure 4.10a), although the

price to pay is a lower resolution of the box. The recovered conductivity shows better

amplitude resolution although the bottom permittivity reflector is now thicker than

in the joint inversion case (see Figure 4.11a) due to the larger weighing of the GPR

low frequency.

Figures 4.10c and 4.11c show the recovered parameters for the low-conductivity

case using joint inversion of GPR and ER data with cross-gradients and using the

weights in the third column of Table 4.2. We see the permittivity solution is very

similar to the joint inversion result (Figure 4.10a). However, the recovered conduc-

tivity has a more even spread in amplitude resolution compared to the joint and

envelope inversion and the artifact amplitude of the permittivity reflector is now less

as compared with Figures 4.11a and b.

Figures 4.10d and 4.11d show the recovered parameters for the low-conductivity
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Table 4.3: Inversion parameters for the high-conductivity scenario.

High σ Joint JEN JOIX JENX
adc • 0.85 0.85 0.85 0.87
ȧdc 1.5 1.5 1.5 1.5

Θ̇dc 1.5 1.5 1.5 1.5
ȧw 2.5 2.5 2.5 2.5

Θ̇w 0.9 0.9 0.9 0.9
βε 1 0.5
βσ 1 0.5
hε 0.2 -0.3
dε 0.6 -3
hσ -0.16
dσ -0.6

case using joint inversion of GPR envelope and ER data with cross-gradients and

using the weights in the fourth column of Table 4.2. The permittivity solution is

again very similar to the results of Figures 4.10a and c but the conductivity solution

is now slightly better than the rest of the inversion results by having a more localized

resolution around the box.

High conductivity

Figures 4.12a and 4.13a show the recovered parameters for the high-conductivity

case using joint inversion of GPR and ER data with weights as in the first column

of Table 4.3. We note very weak amplitude and low spatial-frequency resolution

on the recovered permittivity due to strong attenuation and a signal-to-noise ratio

equal almost to 1 in the region of the box reflection event. The recovered conductivity

exhibits better low spatial-frequency content than the low-conductivity case, however,

there are stronger amplitudes near the top of the box than at depth.
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Figure 4.12: Recovered permittivity with high conductivity using Joint in
a, JEN in b, JOIX in c and JENX in d.
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Figure 4.13: Recovered high conductivity using Joint in a, JEN in b, JOIX
in c and JENX in d.
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Figures 4.12b and 4.13b show the recovered parameters for the high-conductivity

case using joint inversion of GPR envelope and ER data with weights as in the

second column of Table 4.3. The recovered permittivity now exhibits less high-spatial

frequency content than in the joint inversion of GPR and ER case (see Figure 4.12a)

and a small increase in amplitude resolution near the box anomaly. For the recovered

conductivity we note a slight increase in amplitude resolution at depth.

Figures 4.12c and 4.13c show the recovered parameters for the high-conductivity

case using joint inversion of GPR and ER data with cross-gradients and weights as

in the third column of Table 4.3. We see the improved amplitude resolution in the

region where the permittivity box lies, although the overall shape is missing low

spatial-frequency information. The recovered conductivity now has a better depth

amplitude resolution as compared with the joint GPR and ER and joint GPR envelope

and ER inversions (see Figures 4.13a and b).

Figures 4.12d and 4.13d show the recovered parameters for the high-conductivity

case using joint inversion of GPR envelope and ER data with cross gradients and

weights as in the fourth column of Table 4.3. The permittivity anomaly is now re-

covered with an accurate amplitude and overall correct shape, however we observe an

overshoot of low spatial-frequency content as a remanent artifact from the conduc-

tivity solution and the smoothing factor in the gradients. The recovered conductivity

however, is now more accurate at depth and a better overall spatial resolution than

the rest of the inversions.



101

Table 4.4: Inversion parameters for the synthetic alluvial aquifer.

adc • ȧdc Θ̇dc ȧw Θ̇w βε βσ hε dε hσ dσ iterations
Joint 0.2 3 2 1.5 0.3 129
JEN 0.2 3 2 1.5 0.3 0.5 0.5 89
JOIX 0.2 3 2 1.5 0.3 −10−3 -0.4 −10−4 -0.1 400
JENX 0.2 3 2 1.5 0.3 0.5 0.5 −10−3 -0.2 −10−4 -0.1 155

Synthetic alluvial aquifer

In Lavoué et al. (2014) the authors invert GPR surface acquired data of a synthetic

realistic subsurface scenario. The authors use a full-waveform approach and they

note that regularization is needed for constraining the conductivity solution. In this

work, we apply no additional regularization of the inversion beyond the joint objective

function itself and the cross-gradients constraint.

Similar to our discussion for low and high conductivity, we performed all our

inversions (Joint, JEN, JOIX, JENX) on the synthetic alluvial aquifer with inversion

parameters as in Table 4.4. Figure 4.14 shows the recovered permittivity and Figure

4.15 shows the recovered conductivity for all inversions.

In Figure 4.14 for all inversions we see artifact ripples in the first layer. These

ripples are due to the small discrepancy between values of the true and initial model

(approximately 2.5% in the first layer). Similar lower space-frequency artifacts are

also present in the recovered conductivity (see Figure 4.15).

Throughout Figure 4.14 we see the effect of having such a high impedance contrast

between the first layer and the low-velocity region: one-sided acquisition struggles to

resolve the immediate section of the region below the first layer. As seen in Appendix

E, this effect can be drastically reduced in the entire domain if the first layer of our
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Figure 4.14: Recovered permittivity for the synthetic alluvial aquifer using
Joint in a, JEN in b, JOIX in c and JENX in d.
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Figure 4.15: Recovered conductivity for the synthetic alluvial aquifer using
Joint in a, JEN in b, JOIX in c and JENX in d.



104

model is more accurately resolved in the initial models.

If the subsurface anomalies are larger than a wavelength, resolving the region of

the intrusion below the first layer can be very challenging to resolve using only GPR

data. Relying on the envelope of the GPR data (Figure 4.14b and d) to correct it

can cause overshooting the solution. However, by using the ER sensitivity of the

conductivity and the cross-gradients constraint we help mitigate this effect. By doing

so, we retain the right values of permittivity and resolve the corner of the low-velocity

region, see Figure 4.14c and Figure 4.15c. The cross-gradients constraint also helps

stabilize the inversion by enabling to run more iterations without strong artifacts

appearing in the recovered parameters.

We show the borehole data for the JOIX inversion (see Figure 4.14c and Figure

4.15c) in Figure 4.16 and Figure 4.17 for permittivity and conductivity respectively.

In Figure 4.16 we see that despite underestimating the parameters in the initial model,

the permittivity solution accurately approximates the correct values. We also note

that permittivity values at depth lack precision. However, the inversion accurately

locates the location of boundaries, and it does so approximating the right impedance

value.

In Figure 4.17 we also note a lack of accuracy at depth for the recovered conduc-

tivity. Similar to the inherent lack of sensitivity in the GPR data due to two-way

travel, the ER data is mostly sensitive in an upside-down trapezoid region below the

survey line. The sensitivity of the ER data is mostly appreciated in Figure 4.15,

where the conductivity is mostly resolved in a trapezoid region. Figure 4.17c also

exhibits the lack of GPR and ER sensitivity at depth, where although the data is

sensitive to impedance contrasts, it is not capable of resolving the correct magnitude
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Figure 4.16: Recovered permittivity of the synthetic alluvial aquifer using
the JOIX method on boreholes B1, B2 and B3 in a, b and c respectively.
True is solid black and initial model is dashed blue.
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Figure 4.17: Recovered conductivity of the synthetic alluvial aquifer using
the JOIX method on boreholes B1, B2 and B3 in a), b) and c respectively.
True is solid black and initial model is dashed blue.
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Figure 4.18: Synthetic alluvial aquifer data. Observed a and recovered
b GPR data for shot-gather #7. In c observed and recovered ER data.
Recovered data correspond to the JOIX method. Amplitudes are clipped
to 1.5% of the maximum amplitude in the data.

for the conductivity.

Figure 4.18b gives the recovered GPR data for shot-gather #7 and Figure 4.18c

gives both the observed and recovered ER data. We note that most of the reflection

events of the observed GPR data below the air-wave refraction are recovered in Figure

4.18b. Figure 4.9b shows the residual of the recovered and observed GPR data. We

see that the first and second air-wave refraction are recovered, and the corner of the

low-velocity region is resolved up to the noise level. At early times we also note in

Figure 4.9b the artifact ripples in the first layer that the inversion has introduced.

4.5 Discussion

Low & high conductivity

Our numerical results show that all the different objective functions Θ̃w ,Θdc and

Θτ influence each other when compared to their individual inversions. For both

the low and high-conductivity scenarios we find the best results when combining all

the objective functions noting improvements in high and low spatial-frequencies, and
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Table 4.5: RMS error and average of the RMS errors for all inversion
methods of the true and recovered parameters for the low-conductivity
scenario. The region where the errors were calculated is the band between
8 and 12 m in length. The boxed results are the smallest value of each
column.

Low σ ε σ average
Joint 0.3691 0.4927 0.4309
JEN 0.3742 0.4972 0.4357

JOIX 0.3682 0.4912 0.4297

JENX 0.3697 0.4908 0.4303

enhancing amplitude resolution both of the box anomaly and at depth.

In all cases we find the conductivity solutions are significantly of lower spatial

resolution when compared to the permittivity solutions. This is due to the inherent

spatial resolution limitations of the ER data and the attenuation driven sensitivity of

the GPR data to conductivity.

In the low-conductivity scenario we observe a gradual improvement in the conduc-

tivity solution by introducing the objective functions Θ̃w ,Θdc and Θτ . We quantify

this improvement by computing the absolute RMS error of the true and recovered

conductivity for each method in a region around the box-anomaly and shown in the

second column of Table 4.5. However, the improvement in the conductivity solution

slightly degrades the best result for the permittivity solution as shown in the first

column of Table 4.5. The average of both the permittivity and conductivity RMS

absolute errors is displayed in the third column of Table 4.5, indicating that the Joint

inversion of GPR and ER data with cross-gradients gives the best overall result.

In the high-conductivity case it is clearer how both the permittivity and con-

ductivity solutions improve when introducing all objective functions. We quantify
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Table 4.6: RMS error and average of the RMS errors for all inversion
methods of the true and recovered parameters for the high-conductivity
scenario. The region where the errors were calculated is the band between
8 and 12 m in length. The boxed results are the smallest value of each
column.

High σ ε σ average
Joint 0.3708 0.5012 0.4360
JEN 0.3644 0.4992 0.4318
JOIX 0.3666 0.4976 0.4321

JENX 0.3642 0.4915 0.4278

our inversion results in Table 4.6, which is analogous to Table 4.5 but for the high-

conductivity scenario. The smallest RMS errors for both parameters are given by

introducing all Θ̃w ,Θdc and Θτ objective functions.

We conclude that in the low-conductivity scenario where the GPR data is strongly

sensitive to permittivity, improving the conductivity solution costs a slight degrada-

tion of the permittivity solution. In the high-conductivity scenario where the GPR

data is strongly affected by attenuation (and thus a lower signal-to-noise ratio), we can

improve the permittivity solution by directly using data that is not directly sensitive

to permittivity, i.e. ER data using cross-gradients.

Because on average for both low and high-conductivity scenarios the best recovered

parameters are obtained using all objective functions (see third column of Tables 4.5

and 4.6), given field GPR and ER data we recommend using all objective functions.

In the case where the GPR data is strongly sensitive to permittivity we advice caution

with overweighing the envelope gradients of Θ̃w while more leeway can be given to

Θτ in order to improve the conductivity solution. In the case the GPR data is weakly

sensitive to permittivity, we recommend strong weighing on Θτ in order to exploit
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the ER data for the benefit of the permittivity solution.

Synthetic alluvial aquifer

Compared to the low and high conductivity examples, the initial model we used for

the synthetic alluvial aquifer holds much more low-spatial frequency content of the

subsurface. This mostly impacts two aspects of the inversion: 1) the initial conduc-

tivity model already describes the ER data pretty well, yielding a weak ER update.

2) Using the envelope of the GPR data inhibits the FWI gradient to fully exploit

high spatial-frequency features. In this case, the permittivity sensitivity given by the

GPR data can be exploited to improve the spatial resolution of the recovered conduc-

tivity with the cross-gradients constraint. We find the better results by completely

muting the envelope weighting. This weighting strategy is in accordance with the

low and high-conductivity discussion above. The cross-gradients constraint on the

permittivity enhances low spatial-frequency content on the GPR sensitivity, keeping

the inversion artifact-free for more iterations.

Figure 4.19a shows the weights aw and adc as a function of iterations. We choose

a very small starting value for adc in order to let the GPR sensitivity resolve the

missing high-spatial frequency content. In Figure 4.19b we see that most of the

model is resolved in the first 50 iterations. The next 50 iterations resolve mostly the

ER data. After 150 iterations the parameters are resolved within the resolution of

our methods since no relevant change occurs. Later iterations keep improving the

permittivity and conductivity solutions by filling high spatial-frequency details like

for example, the corner of the low-velocity region.
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Figure 4.19: Inversion weights of the synthetic alluvial aquifer using the
JOIX method. In a values of weights aw and adc over iterations. In b
objective function values for Θw,σ and Θdc.
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4.6 Conclusions

We have developed a joint inversion algorithm for one-sided acquired full-waveform

GPR and ER data. The algorithm directly joins GPR and ER data, the envelope of

the GPR data, and structural information of the parameters using a modified cross-

gradients approach. Our three-for-one algorithm manages how much information form

each sensitivity is used in the inversion. This algorithm manages effects of strong

attenuation and enhances low spatial-frequency content in the recovered electrical

permittivity and conductivity.

We tested our inversion scheme on synthetic noisy data and found that even in

regions of high attenuation where the GPR data has a signal-to-noise ratio close

to one we are able to recover accurate enough subsurface electrical properties. In

regions where the attenuation is present but not strong we are able to improve the

low spatial-frequency content and accurately resolve sharp boundaries of the recovered

parameters.

By joining GPR with ER data we exploit the linkage given by Maxwell’s equations

of electrical conductivity in both GPR and ER experiments. Borrowing from seismic

FWI we use the envelope of the GPR data to better resolve amplitudes at depth

and improve the low-spatial frequency content. We have modified the original cross-

gradient scheme to fit with our full-physics inversion without the need for computing

sensitivity matrices of the data or Hessians of the objective functions.

We note that with field data scenarios it might be the case that the more atten-

uation in the GPR data the more sensitive to the subsurface the ER data might be

(high-conductivity scenario), and the less attenuation in the GPR data the less sen-

sitive to the subsurface the ER data might be (low-conductivity scenario). However,
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our algorithm accounts for both scenarios.

We tested our algorithm on a realistic scenario based on an alluvial aquifer de-

posit. We find that the choice for an initial model greatly impacts the recovered

parameters. The best results were found using a smooth velocity model accurate in

shallow depths. We note that although demanding, our initial models may be possible

to realize with field data using existing workflows such as reflection-traveltime and

ER tomography. Our regularization strategy relies on letting the GPR and ER data

regularize each other, together with cross-gradients constraints on both permittivity

and conductivity. Albeit an initial model, no further a priori information is needed.

Even though we have presented 2D results our algorithm can take into account

3D structure by using 3D GPR and ER forward models. An important caveat of our

scheme is assuming ER and GPR are sensitive to a unique electrical conductivity,

and in doing so we do not account for frequency dependent conductivity. While in

some limited types of materials this approximation is reasonable, in general it is not

adequate. Future work will be focused toward accounting for apparent conductivity

differences at DC and radar frequencies.
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CHAPTER 5:

INVERSION OF 2.5D ELECTRICAL

RESISTIVITY DATA USING THE ADJOINT

METHOD1

We present a 2.5D inversion algorithm of electrical resistivity (ER) data that handles

realistic field experiments using low storage requirements. We use the adjoint method

directly in the discretized Maxwell’s steady state equation that governs the physics of

the ER data. In doing so we make no finite difference approximation on the Jacobian

of the data and avoid the need to store large and dense matrices. Rather, we exploit

matrix-vector multiplication of sparse matrices and find satisfactory results using

gradient descent for our inversion routine without having to resort to the Hessian

of the objective function. Moreover, our algorithm does not need extra padding

of the domain since it robustly accounts for boundary conditions in the subsurface.

Given the low storage requirements, our algorithm can be used for joint inversion with

other geophysical methods that may impose finer grid constraints (and larger memory

requirements) without the need of interpolating the sensitivities of the domain. In

an effort to physically appraise the domain of the recovered conductivity, we use a

cut-off of the electric current density present in our survey. We tested our algorithm

1This chapter will be submitted to Geophysics and is currently under internal revision.
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on synthetic and field data acquired in a controlled alluvial aquifer and were able

match the recovered conductivity to borehole observations.

5.1 Introduction

Electrical resistivity (ER) inversions that take into account the full response of the

observed data without assuming subsurface geometry are usefull tools for quantita-

tively characterizing subsurface properties. In recent years, the development of new

algorithms for ER data have focused on better approximations to the forward model

and to the data sensitivities (Günther et al., 2006; Ha et al., 2006; Pidlisecky et al.,

2007; Marescot et al., 2008).

Given that the discretization of the ER governing equations do not require fine

grid meshes along the entire computational domain, using second order inversion

methods is common practice in most ER inversion schemes (Loke & Barker, 1996;

Oldenburg & Li, 1999; Günther et al., 2006; Pidlisecky et al., 2007; Marescot et al.,

2008). Although useful on ER data, emerging inversion algorithms that join sensitiv-

ities from other time domain geophysical methods (for example ground penetrating

radar (GPR) (Domenzain et al., 2019a)) demand either (i) interpolation of the sub-

surface parameters or (ii) having both sensitivities on the same computational grid

(Domenzain et al., 2019a). In Figure 5.1 we see in gray the amount in double pre-

cision memory needed to store the Hessian of the objective function for a range of

domain sizes,

Hessian memory =
bytes · (# of pixels)2

bytes to Gb
. (5.1)

In Ernst et al. (2007a) the authors perform a 2D full-waveform inversion (FWI) of

GPR borehole data on an aluvial aquifer, a setting with usual electrical parameters
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found in the subsurface. The number of pixels in their domain is roughly 105. Com-

monly used ER inversion methods would require approximately 102Gb of memory to

store the Hessian.

In Loke & Barker (1996) and Pidlisecky et al. (2007) the authors approximate the

Jacobian of the data with a finite difference scheme. The motivation of using adjoint

methods is the direct access to the sensitivity of the data in the entire computational

domain. The adjoint method for computing ER sensitivities can be applied by either

considering the continuous objective function (Günther et al., 2006; Marescot et al.,

2008), or the discrete objective function (Pratt et al., 1998; Ha et al., 2006). In

Ha et al. (2006) the authors use the discrete adjoint method similar to Pratt et al.

(1998) (in the context of acoustic FWI in the frequency domain) for computing a

gradient descent direction in a 2D ER inversion. In their work it is shown that

their 2D inversion method costs roughly the same number of flops as Gauss-Newton

ER inversion techniques. However, their method does not accunt for 3D variability

of the subsurface. Moreover, their method requires to numerically transform the

observed data as an apparent electric field and do not account for dissolving boundary

conditions in the subsurface.

For our inversion method, we adapt the acoustic FWI of Pratt et al. (1998) to

a 2D ER inversion that does not need to transform the observed data (Domenzain

et al., 2019a). We use a gradient descent algorithm which relieves the need to store

the Jacobian of the data and approximate the Hessian of the objective function. For

our 2D forward model we use dissolving boundary conditions in the subsurface (Dey

& Morrison, 1979) which relaxes the need to do extra padding of the domain. Using

the approximation of Pidlisecky & Knight (2008), we account for a 2.5D subsurface
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with our 2D forward model. In Pidlisecky & Knight (2008) the authors use a linear

combination of 2D electric potentials to approximate the 2.5D solution. In their code

it is noted that approximately only four 2D electric potentials suffice.

The amount of memory for computing the ER sensitivities with our method is

given by the sum of memory needed to store four 2D electric potentials, and the

amount of memory needed to store a 2.5D forward model matrix. With our finite

volume discretization, each forward model matrix costs roughly six copies of the

domain (5 copies for the 2D forward model and one copy for the 2.5D approximation).

We have,

Our method memory =
bytes ·# of pixels · 4

bytes to Gb
+

bytes ·# of pixels · 6
bytes to Gb

. (5.2)

Figure 5.1 shows in black the amount of memory needed with our method for a range

in domain size. Given the low storage requirements, our algorithm can be used for

joint inversion with data whose forward models impose finer grid constraints without

the need to interpolate the model parameters.

We assess the accuracy of the recovered conductivity at depth using a measure

of electric current density in our survey throughout all iterations. Our method relies

on the physical principle that the sensitivity of surface acquired ER data is given

by electric current lines that return to the surface. Although other methods exist

(Oldenburg & Li, 1999) and have been successful in field surveys (Oldenborger et al.,

2007), they are costly to compute because more than one inversion is needed for their

construction. However, the (costly) exploration of the parameter space given by mul-

tiple inversions of the data give a reliable region for apprasing the solution. Rather

than presenting a substitute for existing methods, we present ours as a computation-
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Figure 5.1: Memory needed to compute ER sensitivities as a function of
domain size. In gray, using the Hessian of the objective function. In black,
using our 2.5D approximation.

ally cheap alternative that takes into account the physics of the ER survey and the

different sensitivities of the data throughout the inversion. We show that at worst

our approach is conservative in appraising the solution domain.

We show the usefulness of our work with a synthetic example and field data ac-

quired at an alluvial acquifer near Boise, Idaho USA. For the ER field data, we com-

pare our results with previous borehole studies at the same site (Oldenborger et al.,

2007; Mwenifumbo et al., 2009) and find similar results for petrophysical parameters

and conductivity values.
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5.2 Methods

5.2.1 ER 2D forward model

Assuming Ohm’s law, the physics of the ER experiment are given by the steady state

Maxwell’s equations (Pidlisecky et al., 2007),

−∇ · σ(x, z)∇ϕ(x, z) = i(δ(x− s+)− δ(x− s−))︸ ︷︷ ︸
s(x,z)

, (5.3)

where ϕ is the electric potential, i is the current intensity, s± is the source-sink

location, and σ is the electrical conductivity. Since we are assuming a 1d survey line

perpendicular to the y axis, the source term s does not depend on y.

We discretize equation 5.3 using a finite volume method with Neumann and Robin

boundary conditions at the air-ground interface and in the subsurface respectively

(Dey & Morrison, 1979). The discretization is expressed as a matrix-vector product,

Lϕ2d = s,

d2d = Mϕ2d,

(5.4)

where L is the discretized differential operator of equation 5.3, ϕ2d is the 2d electric

potential, s is the source term, M is the measuring operator that computes observed

voltages, and d2d is the data of the experiment for one source-sink location. For

every pixel in the domain, the matrix L has as many non-zero entries as neighbors

and another entry for itself. Since an inner pixel has four neighbors, an upper bound

for the non-zero bands of L is 5, with each band having as many elements as pixels

are in the domain.
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5.2.2 Inversion of 2D ER data

We optimize the objective function

Θ2d(σ; do2d) = ||d2d − do2d︸ ︷︷ ︸
e2d

||22, (5.5)

with respect to the conductivity where e2d is the residual of the data. In Domenzain

et al. (2019a) it is shown that the gradient g2d of the objective function Θ2d with

respect to σ for one source can be expressed as,

L>v2d = M>e2d

g2d = S v2d,

(5.6)

where,

S = − ((∇σL)ϕ2d)
> , (5.7)

is a sparse banded matrix whose entries are explicitly calculated (Domenzain et al.,

2019a). Equations 5.6 and 5.7 can also be expressed as,

g2d = J>2d e2d,

J2d = ML−1S>.

(5.8)

We note that because we are computing the dereivative with respect to σ on the

discrete operator L, the boundary conditions of L are also taken into account in S.

The number of non-zero entries in S is the same as L. Each column of S accounts

for one virtual source (Pratt et al., 1998; Ha et al., 2006) and in a given iteration it

is computed once per source s.
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5.2.3 ER 2.5D forward model

Equation 5.3 disregards the 3d structure of the earth that is present in field data. In

order to account for 3d structure while still assuming no significant change in the y

direction, we can express the governing physics of the ER experiment as

−∇ · σ(x, z)∇ϕ(x, y, z) = s(x, z). (5.9)

In order to solve equation 5.9 we use the Fourier-cosine transform in the ky-domain

(Pidlisecky & Knight, 2008),

−∇ · σ∇ ϕ̃(x, ky, z) + k2
y σ ϕ̃(x, ky, z) =

1

2
s(x, z), (5.10)

and then use the inverse Fourier-cosine transform to get the electric potential solution

in the xz-plane,

ϕ(x, y = 0, z) =
2

π

∫ ∞
0

ϕ̃ dky. (5.11)

As explained in Pidlisecky & Knight (2008), discretizing equation 5.11 amounts to

optimizing for an array k of ky values and a corresponding array ω of weights ω.

For completeness, we include the details of this optimization in Appendix A. Both

k and ω do not depend on the subsurface conductivity. They only depend on the

source-receiver geometry.

Once k and ω have been computed, we discretize equation 5.10 for each weight

ki in k as,

Li = Li + k2
i σ, (5.12)

where Li is very similar as in equation 5.4 but the Robin boundary conditions in
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Figure 5.2: Algorithm for computing the 2.5D electric potential given a
source s and conductivity σ.

the subsurface are now different, as dictated by equation F.2. The i’th 2.5D forward

model is,

Liϕ̃i =
s

2
,

d̃i = Mϕ̃i.

(5.13)

The full 2.5d forward model, i.e. the discretized expression of 5.11 is,

ϕ =
2

π

∑
i

ϕ̃i ωi. (5.14)

In Figure 5.2 we give all the steps of the algorithm for computing ϕ.
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5.2.4 Inversion of 2.5D ER data

We now want to optimize the objective function

Θ(σ; do) = ||d− do︸ ︷︷ ︸
e

||22, (5.15)

with respect to the conductivity where e is the residual of the data. We compute the

gradient g of Θ by,

g = J>e, (5.16)

where J = ∇σd. In order to find an expression for J we first write d in terms of d̃i,

d = Mϕ = M
2

π

∑
i

ωiϕ̃i︸ ︷︷ ︸
ϕ

,=
2

π

∑
i

ωi Mϕ̃i︸ ︷︷ ︸
d̃i

=
2

π

∑
i

ωid̃i. (5.17)

We can now apply ∇σ to equation 5.17,

∇σd =
2

π

∑
i

ωi∇σd̃i︸ ︷︷ ︸
Ji

=
2

π

∑
i

ωiJi︸ ︷︷ ︸
J

, (5.18)

Equation 5.18 is a recepie for computing J. By substituting equation 5.18 in equation

5.16 we have,

g =
2

π

(∑
i

ωiJi

)>
e

=
2

π

∑
i

ωi J
>
i e︸︷︷︸
g̃i

.

(5.19)
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In the last equality we write g̃i = J>i e because with a similar approach as in Domen-

zain et al. (2019a) for equation 5.6, from equation 5.13 we have,

L>i ṽi = M>e,

g̃i = Siṽi,

(5.20)

where

Si = −
(
(∇σL

i)ϕ̃i
)> − k2

i diag(ϕ̃i)
>, (5.21)

and similarly to equation 5.8 we have Ji = ML−1
i S>i . In conclusion, we compute the

gradient g of equation 5.15 by,

g =
2

π

∑
i

ωig̃i. (5.22)

Figure 5.3 gives a summary for computing g. An upper bound for the size of each Si

is the size of S plus one more band (see equation 5.21).

Updating the conductivity

Equation 5.22 gives the gradient g for equation 5.15 with respect to σ for one source.

In general, we regularize g by adding the normalized residual of a reference conduc-

tivity σo and then smoothing in the space-frequency domain. After computing g with

equation 5.22 and normalizing by its largest magnitude we have,

g← g + β
σ − σo

max(abs(σ − σo))
, (5.23)
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Figure 5.3: Algorithm for finding the 2.5D gradient g.
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where β is a fixed number smaller than one. The gradient g exhibits large values

near the receiver locations. In order to suppress these artifacts, we smooth g using a

space-frequency low-pass filter (Taillandier et al., 2009; Domenzain et al., 2019a). In

practice we use a gaussian of width λ,

λ =
1

∆r · a
, (5.24)

where ∆r is the electrode spacing in meters and a is close to one, loosely 0.5 ≤ a ≤ 1.5.

After smoothing the gradient and normalizing by its largest amplitude, we find the

step size as proposed by Pica et al. (1990) and adapted for our ER inversion in

Domenzain et al. (2019a).

In order to enforce positivity constraints on σ we do a logarithm change of variable

on the objective function, Θ(σ) = Θ(ln(σ)). Using the chain rule we have,

gσ =
1

σ
� glnσ, (5.25)

where the subscript denotes the variable under consideration and � denotes element

wise multiplication. Computing the update, using equation 5.25 and taking the in-

verse of the logarithm we have,

ln(σi+1) = ln(σi)− α glnσ,

σi+1 = σi � exp(−α · σi � gσ).

(5.26)

Equation 5.26 holds true for one source. In practice however, we update σ once all

update directions −αg for all sources in our survey have been computed. The global

update ∆σ is the average of all update directions over all sources. At late iterations
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when the sensitivity of our data is weak, ∆σ might struggle to find a true descent

direction. This issue can be addressed by using momentum (Rumelhart et al., 1986)

which only costs the storage of the previous iteration update, ∆σdc •. The final update

for the conductivity is given by,

∆σ ← ∆σ + β•∆σdc •,

σ ← σ � exp(σ �∆σ),

(5.27)

where β• is a fixed number smaller than one. Figure 5.4 gives the full algorithm for

our inversion.

Solution appraisal

Physically, the sensitivity at depth of the ER survey is given by the electric current

density of all shot-receiver pairs in the survey. Depending on our initial model, each

forward model in the ER inversion might have different electric current densities

throughout iterations. Therefore, throughout the inversion the illumination of the

subsurface changes as a function of the observed data and the initial conductivity

model.

At each iteration i, we quantify the total electric current densitiy in our inversion

by summing the absolute value of the electric potentials ϕ given by our forward

models (see equation 5.14),

Ψi =
∑
j

|ϕj|, (5.28)

where j runs through all forward models. As iterations proceed, we keep adding the

previous Ψi to the new one to obtain a final measure of electric current density Ψ,
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Figure 5.4: 2.5d inversion algorithm.
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then we normalize Ψ by its largest amplitude,

Ψ =
∑
i

Ψi

Ψ← Ψ

max(Ψ)
.

(5.29)

Given the harmonic nature of the electric potential, the field Ψ will have a level curve

beyond which the electric current lines will no longer return to the surface. We choose

this level curve as a cut-off for Ψ from which all level curves below this cut-off are

considered to not contain relevant information. The resulting image for Ψ is then a

collection of ones in the xz-plane above the cut-off value.

5.3 Examples

5.3.1 Synthetic data example

We test our algorithm on a synthetic scenario as shown in Figure 5.5a. The model

consists of a 20m by 4m subsurface domain with a 10mS/m cylindrical anomaly

embedded in a 5mS/m background. We use 17 electrodes spaced 1m appart with all

possible dipole-dipole, Wenner and Schlumberger arrays. The full discretized domain

is of size 81× 401 with a square pixel size of 0.05m.

Our initial model is a homogeneous conductivity equal to the background of our

model. Besides smoothing the gradients g, for this example we do not impose regu-

larization on the inversion. We choose a smoothing factor of a = 1.1 (see equation

5.18) and a value of β• = 0.02.

In Figure 5.5b we see the recovered conductivity in the entire computational

domain, and in Figure 5.5c we see the recovered conductivity with a current density
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Figure 5.5: True a, recovered b and appraised c conductivity for the syn-
thetic example. The dashed cyan line in a represents a borehole location.
The dashed black line (in b and c) represents the contour of the cylinder.

cut-off of 0.025%. Our solution appraisal technique is able to remove parts of the

domain where we have a poor constraint in our solution (bottom of the domain) but

keep parts where the recovered conductivity remains close to the true model. We note

that by choosing a cut-off that eliminates the electric current leaving the domain, we

are conservatively assesing our solution.

In Figure 5.6 we show a borehole comparison along the center of the domain.
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Figure 5.6: True (black) and recovered (red) conductivity at the center
borehole for the synthetic example. The dashed gray line shows the cut-off
for our appraised solution.
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5.3.2 Field data example

We acquired field data at the Boise Hydrological Research Site (BHRS) in May 2019.

The site is an alluvial aquifer next to the Boise river as seen in Figure 5.7. The water

flow in the river is controlled by a nearby dam and is increased throughout spring as

warmer temperatures thaw the snowpack in the nearby Sawtooth mountain range.

We aimed our experiment to take place when the water table was at its highest point

without the site being flooded. We used an IRIS Syscal Pro resistivity system with a

total of 36 electrodes spaced 1m apart in a one dimensional line perpendicular to the

river as shown in Figure 5.7. Our survey consisted of all possible dipole-dipole and

Wenner arrays for a total of 1175 source-receiver pairs. Although flat, the survey line

has a slight tilt (≈0.4m) in elevation going from low to high away from the river.

Based on knowledge of site stratigraphy (e.g. Bradford et al. (2009b)) the position

of the line perpendicular to the river was chosen to enhance the variability of conduc-

tivity in the xz-plane whlie keeping the y coordinate variability of the conductivity

constant. For each source-receiver pair the raw data recorded by the Syscal Pro is

in units of volts, paired with readings of source current magnitude (positive and in

units of Amperes), apparent resistivites computed by the system (in units of Ohm per

meter), and a measure of standard deviation (each shot was performed eight times).

Preprocessing

For our inversion we take as data only the voltage readings. However, before per-

forming our inversion we use all the Syscal Pro data to enhance the quality of our

inversion in three steps. 1) Remove the negative apparent resistivities given by the

Syscal Pro system since these data points are not physical and are contaminated by
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Figure 5.7: Geographic location of the Boise Hydrological Research Site
(BHRS). The red dots denote the existing boreholes. Our survey line
crossed boreholes B5, A1 and B2 as shown by the green line.
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Figure 5.8: Dipole-dipole pseudo section with a-spacing equal to 1m from
the BHRS.

noise. 2) Eliminate data points whose standard deviation is more than a fixed cut-

off. In this case the cut-off was 5 standard deviations. 3) Divide the voltage readings

by their respective source current magnitude. This last step is done to enable multi

source-receiver pairs in each forward model of our inversion. We will refer to multi

source-receiver pairs that share the same source as shot-gathers. Our data consists of

342 shot-gathers. The next step is to compute the weights k and ω (see Figure F.1).

Figure 5.8a and Figure 5.9a give the observed but preprocessed apparent resistivities

of the dipole-dipole with a-spacing equal to 1m and Wenner arrays respectively.

Inversion

Our initial model is a homogeneous subsurface with a conductivity equal to 2mS/m.

We regularize the inversion using a homogeneous reference conductivity equal to our
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Figure 5.9: Wenner pseudo-section of the BHRS.

initial model, and weighting factors of β = 0.001 and β• = 0.5. The full discretized

domain is of size 301 × 901 with a square pixel size of 0.05m. Figure 5.10 gives the

recovered conductivity corrected for topography and with a current density cut-off

equal to 0.002%. Figure 5.11 shows the observed vs recovered data.

We evaluate our results with water table depth, neutron porosity (Barrash &

Clemo, 2002), and capacitive conductivity (Mwenifumbo et al., 2009) taken from

borehole measurements. For our borehole analysis we choose to use the full domain

of our solution. We do this because as explained below we are still able to extract

meaningful physical information of the subsurface, and as noted in the synthetic

example, our cut-off criteria can be overly conservative. The water table depth was

1m and measured the same day the survey was done. Figure 5.10 shows our recovered

conductivity accurately images the water table boundary. We further note the wet
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inland intrusion of the river is accurately represented in our image.

Figure 5.12 shows the normalized porosity and recovered conductivity along the

entire computational domain. Qualitatively, our recovered conductivity and measured

porosity follow the same low-frequency trend. This trend is mostly appreciated in

Figure 5.12a for borehole B5, where the peak-trough-peak shape of the porosity is

closely followed by the recovered conductivity beyond our solution appraisal cut-off.

Quantitatively, we compare our inversion results following Oldenborger et al.

(2007) who perform a time lapse borehole ER monitoring of the same site in Summer

of 2004. Their analysis uses Archie’s law (Archie et al., 1942) to compare the forma-

tion factor derived by ER recovered conductivity and the formation factor derived by

the neutron porosity. For each borehole B5, A1 and B2 we compute the formation

factor with our recovered conductivity,

FER =
σf
σz
, (5.30)

where σz denotes our recovered conductivity along the borehole and σf is the fluid

conductivity. We take σf =20mS/m as given by Oldenborger et al. (2007). We then

invert in depth for the cementation factor m using the neutron porosity (φ) and the

porosity derived from FER,

φER =

(
1

FER

)1/m

. (5.31)

This gives us a depth profile for m. Using m we compute the formation factor from

the neutron porosity as,

Fφ =
1

φm
. (5.32)

Oldenborger et al. (2007) give average values of FER = 13±4, m = 1.7 and Fφ = 13±4.
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Figure 5.10: Recovered conductivity from the BHRS with topographic
correction. The dashed cyan line represents the water table depth as
measured on site (1m deep). The solid cyan lines represent the borehole
positions.

In Table 5.1 we find similar values (within ±1 standard deviation) for FER, Fφ and

m with our recovered conductivity.

Figure 5.13 shows our recovered conductivity next to the capacitive conductivity

as measured by Mwenifumbo et al. (2009). Their experiment was performed in the

month of November, when the river water flow had significantly decreased to a 2m

deep water table. Even though our experiments were performed with different ground

water conditions, our recovered conductivity is within the same order of magnitude

and follows close resemblance inside our appraised solution. Beyond our appraised

solution near 10m in depth, both conductivity profiles show an up-ward trend that is

also present in the neutron porosity (Figure 5.12).
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Figure 5.11: Observed vs recovered ER data acquired at the BHRS.

Table 5.1: Formation and cementation factor appraisal for each borehole
using recovered conductivity and neutron porosities. Our results correlate
well to a previous borehole ER survey at the same site up to a standard
deviation of at most ±1.

B5 A1 B2
m 1.7± 0.3 1.8± 0.3 1.6± 0.1
FER 12.5± 3 13.3± 3 13.9± 3
Fφ 12.5± 3 13.3± 3 13.9± 3



139

Figure 5.12: Normalized recovered conductivities (red) and borehole neu-
tron porosity (black) at borehole locations in the BHRS. The dashed gray
line shows the cut-off for our appraised solution.
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Figure 5.13: Recovered ER (with our method - in red) and capacitive
conductivities (black) at borehole locations in the BHRS. The dashed gray
line shows the cut-off for our appraised solution.
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5.4 Conclusions

We have developed an adjoint based method for inverting 2.5D electrical resistivity

(ER) data. Our algorithm makes no assumption of the subsurface conductivity geom-

etry. We directly obtain the sensitivity of the data in the entire domain and do not

need to approximate the Jacobian of the data using finite differences. Moreover, we

take into account dissipating boundary conditions in the subsurface and do not need

to store large dense matricies (like the Jacobian of the data and the Hessian of the

objective function). This enables us to very finely discretize the subsurface with fea-

sible memory requirements. As a result, our algorithm can be used for joint inversion

with data whose forward models impose finer grid constraints (for example, ground

penetrating radar (GPR)) without the need to interpolate the model parameters.

In order to assess the quality of the recovered parameters, we use a measure of the

electric current density present in our domain throughout iterations. This method

for quality assessment takes into account the physics of the ER survey, the data,

the model parameters throughout iterations and does not need extra inversions with

different initial models. At worst our method is conservative in assessing the quality

of the recovered parameters. However, it is less accurate than other existing methods

that explore the model space in a more exhaustive way.

We tested our algorithm on a synthetic example and on field data aquired at an

alluvial aquifer near Boise, Idaho USA. We find good correlation of our field data

results with neutron porosity and capacitive conductivity borehole measurements

taken on the site in previous surveys.
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CHAPTER 6:

CONCLUSIONS

Recovering electrical properties of the subsurface is a valuable recourse for ground-

water and geothermal exploration, contaminat and hazard mitigation, and carbon-

dioxide sequestration. Given the increasing demand in water, non-fossil based energy,

and carbon-dioxide mitigation, electrical methods prove to be an important tool for

society as our planet enters an unprecedented age of rapid change in climate.

Full-waveform inversion (FWI) of ground penetrating radar (GPR) is a promis-

ing technique for recovering permittivity and conductivity values of the subsurface

without imposing geometrical assumptions of their underground location. Current

literature on FWI-GPR has mostly focused with transillumination surveys. When

dealing with surface acquired data, using the full waveform in the GPR data can

easily lead to local minima solutions due to the lack of transmition information, at-

tenuation in the media, and lack of low frequencies.

Electrical resistivity (ER) is a common technique for recovering conductivity of

the subsurface. Most ER inversion methods use the full response of the ER data and

are able to recover conductivity at depth without imposing geometrical assumptions.

However, when compared to GPR sensititivy, the resolution of the ER sensitivity

is of lower spatial-frequency content. Fortuately ER and GPR hold complementary

sensitivities to the subsurface. GPR is sensitive to conductivity through attenuation
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and reflection while ER is directly sensitive to conductivity.

We exploit the complementary relationship of GPR and ER sensitivities in a joint

inversion scheme that takes into account the full physical response of both GPR and

ER data. Our algorithm makes no petrophysical assumptions enabling it to be site

independent. Rather the two types of data are combined so that GPR effectively

supports ER in regions of low conductivity while ER supports GPR in regions with

strong attenuation. In cases where the attenuation is high we add structural similarity

constraint so that the ER sensitivity to the conductivity can enhance the resolution

and accuracy of the permittivity solution. Structural similarity constraints can also

improve the recovered conductivity by letting the permittivity enhance high spatial-

frequency content in the conductivity solution.

Existing methods for inverting ER data rely on the computation and storage of

the Jacobian of the data and the Hessian of the objective function. The amount of

memory needed by these methods can become unfeasible when using the fine dis-

cretization requirements of the GPR-FWI scheme. We have developed a 2.5D ER

adjoint method inversion that is capable of recovering accurate subsurface conduc-

tivity from field data and relaxes the amount of required memory. Having feasible

computational methods for both GPR and ER inversions is an important step for

using our joint inversion algorithms on field data.

In Chapter 3 we develop the joint conductivity update that takes into account

both the ER and GPR sensitivities. In this inversion approach, we assume electrical

parameters are frequency independent. We note that for a variety of earth materials

the DC and effective conductivity vary by a factor less than 5. In cases where the

discrepancy is more than a factor of five, the attenuation might be too strong for
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the GPR data to hold meaningful information about the subsurface. Although not

true in general, assuming frequency independent parameters enables us to evaluate

the algorithm and comprises a reasonable trade-off between computation cost, field

applications, the full use of the GPR waveform, a lack of enforced assumptions of

subsurface geometry and petrophysical models. We find that our joint inversion out-

performs both GPR and ER separate inversions and determine that GPR effectively

supports ER in regions of low conductivity while ER supports GPR in regions with

strong attenuation.

In Chapter 4 we enhance our algorithm by incorporating the envelope of the

GPR data as an extra objective function. Furthermore, we also impose an iterative

structural constraint using the recovered parameters and the cross-gradients objective

function. Contrary to the existing literature using cross-gradients, our enhanced

algorithm is still based on gradient descent. This relaxes the computational memory

cost and enables us to use cross-gradients while also using the full time response of

the GPR data (as opposed to modeling the GPR experiment in the frequency domain

and approximating the Hessian of the objective function). We find that exploiting

low frequency content in the GPR data and assuming structural similarities between

electrical permittivity and conductivity, we are able to recover subsurface parameters

in regions where the GPR data has a signal-to-noise ratio close to one.

In Chapter 5 we develop a low storage 2.5d ER inversion algorithm that accurately

describes field data in realistic scenarios. Our algorithm makes no assumption of the

conductivity geometry, accurately models the boundary conditions in the subsurface

and does not need the storage of large dense matricies (like the Jacobian of the data

and the Hessian of the objective function). We tested our algorithm on synthetic
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and field data aquired at an alluvial aquifer near Boise, Idaho USA. We find good

correlation of our field data results with porosity logs taken at the site. Given the

low storage requirements, our algorithm can be used for joint inversion with data

whose forward models impose finer grid constraints without the need to interpolate

the model parameters.

6.1 Discussion

The work presented in this dissertation has been a growing seed that has fruitfully

enriched the geophysical community through numerous conference presentations and

two journal papers currently under review. In what follows, I will discuss the paths

I see for continuing and enhancing our joint inversion algorithm.

For our initial models we demand long wavelength structure that could realistically

be obtained from reflection tomography and analysis of direct arrivals. Such initial

models require careful user input. While accurate velocity models can be obtained

using these methods, the promise of relieving our inversions from a priori information

is compromised. Another caveat of this approach is that conductivity would not be

accounted for. It is my intuition that a more accurate method is yet to be invented.

If the GPR data exhibits air-wave refractions it is usually because there is a

strong shallow reflector. In general, we do not know neither the depth or velocity of

this reflector. A possible path for building a better initial model could be using the

idea introduced in the virtual refraction method (Mikesell et al., 2009). This method

exploits artifacts in the virtual shot gather given by seismic interferometry in order to

obtain information about the subsurface. In particular, the method uses an artifact

caused by having sparse illumination and a shallow in-depth refractor. Our case is

different since the refractor is the air layer. We would have to analyze the virtual shot
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gather and discover a new type of artifact caused by having such a shallow reflector.

It would be a method inspired by the virtual refraction but different overall - a

virtual reflectio-refraction. Since this method was developed for wavefields traveling

in media where velocity increases in depth and our case is the opposite we would

have to modify it. Such a method would also have to account for attenuation in the

media, which could be done with the interferometric multi-dimensional deconvolution

method (Snieder et al., 2007).

Another approach for relaxing the initial model could be to further enhance our

FWI-GPR objective function by 1) a frequency stepping scheme and 2) variable

weights for the envelope sensitivity. It has been shown in the literature (Meles et al.,

2012) that a frequency stepping approach can benefit the resolution of the recovered

parameters. Allowing the envelope sensitivity to resolve long wavelength structure at

early iterations, and then letting the higher frequency sensitivities take over the in-

version might help resolve regions of the subsurface located next to sharp impedence

boundaries.

Lastly, I believe that building a scientific technology is half the path, the other

half is applying it. I would be delighted to see how researchers from other disciplines

embrace our work for answering questions we have not thought about. Personally, I

would like to try using lower frequency GPR antennas to solve for deeper subsurface

features. Depending on the subsurface properties, the diffusion limit of electromag-

netic propagation might be met with lower frequency antennas, so we would have to

account for that either in our algorithm or in choosing the right field antennas. Some

collegues believe longer antennas (8m at most in length) might be cumbersome to

move in the field. Perhaps attaching the antennas to a zip line that gets taut when
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moving and loose when acquiring the data would solve the problem.
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Virieux, Jean. 2014. Two-dimensional permittivity and conductivity imaging by

full waveform inversion of multioffset GPR data: A frequency-domain quasi-Newton

approach. Geophysical Journal International, 197(1), 248–268.

Linde, Niklas, & Vrugt, Jasper A. 2013. Distributed soil moisture from crosshole

ground-penetrating radar travel times using stochastic inversion. Vadose Zone

Journal, 12(1).

Linde, Niklas, Binley, Andrew, Tryggvason, Ari, Pedersen, Laust B, & Revil, Andre.

2006. Improved hydrogeophysical characterization using joint inversion of cross-

hole electrical resistance and ground-penetrating radar traveltime data. Water

Resources Research, 42(12).

Liu, Zhiyang, & Zhang, Jie. 2017. Joint traveltime and waveform envelope inversion

for near-surface imaging. Pure and Applied Geophysics, 174(3), 1269–1289.



156

Loewer, M, Günther, T, Igel, J, Kruschwitz, Sabine, Martin, T, & Wagner, N.

2017. Ultra-broad-band electrical spectroscopy of soils and sediments—A combined

permittivity and conductivity model. Geophysical Journal International, 210(3),

1360–1373.

Loke, Meng Heng, & Barker, RD. 1996. Rapid least-squares inversion of apparent

resistivity pseudosections by a quasi-Newton method 1. Geophysical prospecting,

44(1), 131–152.

Marescot, Laurent, Lopes, Sérgio Palma, Rigobert, Stéphane, & Green, Alan G. 2008.
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APPENDIX A:

OPTIMALLY PERTURBING

Given a descent direction, finding the right step size is equivalent to traversing the

objective function hyper-surface in the direction of the gradient (−agε) starting from

our current value of ε and finding the value a = αε which minimizes the objective

function (Wright & Nocedal, 1999). Traversing the objective function hyper-surface

is done by perturbing the current value for ε with a collection of real numbers ai. In

equation 3.11 we used the notation ai = piκε and gave empirical values for pi. In this

section we find κε.

To speed-up convergence but maintain stability we perform a descending search

for κε. We start with a large value of κε and compute the perturbation ε̂,

ε̂ = ε� exp(−ε� κε gε). (A.1)

We then check if the minimum and maximum value of ε̂ lie within our stability

velocity region: if they do we have found κε, if they do not we decrease κε until they

do. In practice once we have found a value of κε that lies within our stability region,

we repeat the search with finer ascending values of κε to make sure ε̂ is as snug as

possible in our velocity interval.
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APPENDIX B:

ER GRADIENT
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Taking the derivative with respect to σ and using the chain rule on the ER

objective function for one source location,

Θs
dc(σ; sdc,d

o,s
dc ) =

||dsdc − do,sdc ||22
||do,sdc ||22

, (B.1)

we have,

∇σΘs
dc = ∇ddcΘ

s
dc · ∇σd

s
dc, (B.2)

where ∇σΘs
dc and ∇dsdc

Θs
dc are vectors of size 1×nxnz and 1×ndsdc

respectively (where

ndsdc
is the number of entries in the data) and ∇σddc is the Jacobian Jdc of ddc, a

matrix of size ndsdc
×nxnz. Because of our choice of Θs

dc to be the sum of square errors,

∇dsdc
Θs
dc is equal to e>dc. We make the convention of calling gdc the vertical vector

whose entries are the partial derivatives of Θs
dc with respect to σ, i.e. gdc = (∇σΘs

dc)
>.

We now take the transpose of equation B.2,

gdc = J>dc edc. (B.3)

Our task will be to find a different expression for the right-hand side of equation

B.3,(Domenzain et al., 2017; Pratt et al., 1998).

Using the product rule on equation 3.16, we have

Ldc∇σϕ+ (∇σLdc)ϕ = 0. (B.4)

We now transpose equation B.4,

(∇σϕ)>L>dc = Sdc, (B.5)
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where Sdc = −((∇σLdc)ϕ)> is a matrix of size nxnz×nxnz whose entries are explicitly

calculated as a function of σ, the spacial discretization and ϕ. We define the adjoint

field vdc to satisfy,

L>dc vdc = M>
dc edc, (B.6)

and multiply equation B.5 on the right side by vdc,

(∇σϕ)> L>dcvdc = Sdc vdc,

(∇σϕ)>M>
dcedc = Sdc vdc,

(∇σd
s
dc)
> edc = Sdc vdc,

J>dc edc = Sdc vdc,

(B.7)

where in the second to last equality we have used ∇σd
s
dc = Mdc∇σϕ. Finally we

write,

gdc = Sdc vdc. (B.8)

We note that this approach is similar to Pidlisecky et al. (2007), although we have

explicitly written an expression for Ldc and Sdc entry by entry rather than as a

multiplication of discretized differential operators, which yields full rank on Ldc and

Sdc because of the used boundary conditions.
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APPENDIX C:

ENVELOPE GPR GRADIENT
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In order to apply the FWI scheme with the modified envelope data, we first need

to deduce a new adjoint source as a result of the chain rule on our objective function.

We follow Bozdağ et al. (2011) and define the adjoint source of equation 3.6 in the

continuous case and then bring it back to the discrete case. Let u denote the y

component of the electromagnetic wavefield defined in space and time for a given

source. We denote the analytical representation of u by,

ũ = u+ iû, (C.1)

where the hat denotes the Hilbert transform of u. We will also refer to the Hilbert

transform of u by {u}H . We will modify the objective function Θw, and that will

modify the adjoint source because of the chain rule on Θw.

The instantaneous amplitude of the wavefield (i.e. envelope) is,

ua =
√
u2 + û2. (C.2)

In what follows we will define new objective functions and find the new adjoint source

for them. We will denote du the derivative with respect to u and use this identity

derived from the definition of the Hilbert transform,

∫
f · duĝ dt = −

∫
f̂ · dug dt. (C.3)

Let the instantaneous amplitude objective function be,

Θw,a =
1

2

∫ T

0

e2
w,a dt, ew,a = ua − uoa, (C.4)
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where the superscript o denotes observed data. We need the derivative of Θw,a with

respect to the parameters, and for that we also need duΘw,a since u depends on the

parameters. We have,

duΘw,a =

∫ T

0

ew,a · duew,a dt,

duew,a = duua,

=
u+ û · duû

u2
a

.

(C.5)

We now invoke identity C.3 in duΘw,a,

duΘw,a =

∫ T

0

ew,a · u
ua

−
{
ew,a · û
ua

}
H︸ ︷︷ ︸

adjoint source

dt.
(C.6)

From equation C.6 we have that in the discrete case for an observed shot-gather do,sw

the adjoint source for the envelope transformed data is,

sw,a =
ew,a · do,sw

do,sw,a
−
{

ew,a · {do,sw }H
do,sw,a

}
H

, (C.7)

where do,sw,a denotes the envelope of the observed data and ew,a denotes the residual of

the observed envelope data and the synthetic envelope data. The gradients gσ,a and

gε,a are,

vw = Lw sw,a(−t), (C.8)

gσ,a = −
∑
t

u(−t)� vw(t) ·∆t, (C.9)

gε,a = −
∑
t

u̇(−t)� vw(t) ·∆t. (C.10)
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MINIMIZING Θτ
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We present a Gauss-Newton algorithm for optimizing Θτ that enables our joint

inversion scheme to independently weigh the structure of σ over ε (or vice-versa).

Let Dx and Dz be the discretized differential operators in the x and z directions

written as matricies of size nxnz × nxnz,

τ = Dx ε�Dz σ −Dz ε�Dx σ. (D.1)

The derivatives of τ with respect to ε and σ are,

∇ετ = Dx �
[
Dz σ

]
−Dz �

[
Dx σ

]
,

∇στ = Dz �
[
Dx ε

]
−Dx �

[
Dz ε

]
,

(D.2)

where brackets indicate a matrix of size nxnz × nxnz and all columns of a matrix [a]

are the column vector a. Let J>τ,◦ = ∇◦τ , then the gradients of Θτ are,

gτ,ε = Jτ,ε τ,

gτ,σ = Jτ,σ τ.

(D.3)

We compute the updates of ε and σ by,

∆ετ = −(Jτ,εJ
>
τ,ε + ατ,εI)−1gτ,ε,

∆στ = −(Jτ,σJ
>
τ,σ + ατ,σI)−1gτ,σ,

(D.4)

where I is the identity matrix of size nxnz ×nxnz, and ατ,ε and ατ,σ are step-sizes for

the optimal descent direction for the previous iteration gradients and are computed

with an n-point parabola approximation. We then normalize the updates by their

largest amplitude and scale them with their respective current step-sizes. At each
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iteration, either ε and σ are updated by,

ε← ε+ ∆ετ ,

σ ← σ + ∆στ .

(D.5)

In order to control the weigh of either structures ε or σ in our joint inversion, at each

iteration we store the update information of ∆ετ and ∆στ in the master updates

∆ετ,◦ and ∆στ,◦,

∆ετ,◦ ← ∆ετ,◦ + ∆ετ , (D.6)

∆στ,◦ ← ∆στ,◦ + ∆στ . (D.7)

We note that in our inversion scheme presented in the section Joint inversion with

cross-gradients we first optimize Θτ modifying σ and keeping ε fixed, and then we

optimize Θτ modifying ε and keeping σ fixed.
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APPENDIX E:

INITIAL MODELS FOR THE SYNTHETIC

ALLUVIAL AQUIFER



173

For the first initial model (see Figure E.1-a), we smooth the true permittivity with

a low-pass gaussian filter as to only allow two characteristic wavelengths in the space-

frequency domain (a gaussian with a half-width of 0.8 1/m). For the second initial

model (see Figure E.1-b), we first remove the top layer from the true permittivity

model, we then smooth analogously as for the first initial model, and then we return

the first layer without smoothing. In order to keep the location of the shallow reflector

equal in both initial permittivity and conductivity, we interpolate permittivities to

obtain Figure E.1-c and Figure E.1-d.

Two main differences between the first and second initial models are that the first

initial model does not have an accurate amplitude in the first layer and does not

follow the low velocity region in length. As a result, when compared to the inversions

of the first initial model (Figures E.1-e and g), the second model is visibly able to

resolve all layers in the model with minimal artifacts in the first layer (Figures E.1-f

and h). We note however, that the first initial model is able to correctly identify the

location of the first-second layer boundary.

We choose the initial model for the inversions presented in the main text as a

perturbed true model between the two initial models presented in this Appendix.

First we remove the top layer from the true permittivity model, and then smooth

with a low-pass gaussian filter as to only allow two characteristic wavelengths in the

space-frequency domain (a gaussian with a half-width of 0.8 1/m). Then we decrease

the values by 4% of the true values, return the first layer and smooth again as to

only allow six characteristic wavelengths in the space-frequency domain (a gaussian

with a half-width of 2.5 1/m). The initial model for the conductivity is achieved by

interpolation of the permittivity. The result is a smooth initial model with values 4%
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less than the true model but with a not-so-smooth first layer interface.

Such a smooth initial velocity model can be achieved by following the inversion

procedure of Bradford et al. (2009b). This method for estimating an initial velocity

model is robust when air-wave refractions are present in the data, and resolves the

subsurface in a top-down approach. We conclude that if the GPR field data exhibits

air-wave refractions, the better the initial model fits these events in the data, the

better the inversion results will be.
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Figure E.1: Sensitivity analysis of the initial model for the synthetic al-
luvial aquifer. In a), b), c) and d we have the first and second initial
model for permittivity and conductivity. In e), f), g) and h we have their
respective recovered parameters by using the JOIX method.
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APPENDIX F:

FOURIER COEFFICIENTS FOR 2.5D

TRANSFORM
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In order to solve equation 5.14 we must find weights k and ω to accurately ap-

proximate the integral in equation 5.11. We follow Pidlisecky & Knight (2008) and

note that the Green’s function solution for homogeneous σ of equation 5.9 on the half

xz-plane is,

ϕ(x, y = 0, z) =
i

2πσ

 1

||x− s+||2︸ ︷︷ ︸
r+

− 1

||x− s−||2︸ ︷︷ ︸
r−


︸ ︷︷ ︸

1/R

. (F.1)

Applying the forward Fourier-cosine transform,

ϕ̃ =

∫ ∞
0

ϕ cos(y ky) dy =
i

2πσ
(Bo(kyr+)−Bo(kyr−)), (F.2)

where Bo is the zero order modified Bessel function of the second kind. By plugging

in equations F.1 and F.2 into equation 5.14 we discretize by

1 ≈
∑
j

2R

π
{Bo(kj r+)−Bo(kj r−)}︸ ︷︷ ︸

Kij

ωj

K =
2R

π
{Bo(k r+)−Bo(k r−)}

f ≈Kω,

(F.3)

where K = K(k, s) is a matrix of size nR × nk, nR and nk are the size of R and

k respectively, f is a vector of length nR whose entries should approximate 1, and

k = (kyi), ω = (ωi) are vectors of length nk. We minimize

Φ(k) = ||1−K (K>K)−1K>︸ ︷︷ ︸
ω︸ ︷︷ ︸

f(k)

||22 = ||1− f(k)||22, (F.4)
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Figure F.1: Algorithm for finding the 2.5D transformatin weights ω.

using a regularized Newton method. The vector of all ones is denoted 1. Note that

both k and ω are geometry dependent and not parameter dependent. Lastly, we follow

Pidlisecky & Knight (2008) and use a small number for nk, usually nk = 4. Figure

gives the full optimization algorithm (Pidlisecky & Knight, 2008) for computing k

and ω.
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