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Abstract
Oscillatory pumping tests—in which flow is varied in a periodic fashion—provide a method for understanding aquifer

heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing,
pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a
time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide
information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not
common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the
literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two
key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies
and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given
design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing
helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals
to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the ‘‘sensed’’ extent of an aquifer
at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize
design of oscillatory pumping test campaigns.

Introduction
To perform basic characterization of aquifer flow

properties (permeability and storage coefficients), field
investigators commonly implement variants of three basic
strategies—constant-rate pumping tests (or, alternately,
recovery tests), constant-head tests, and slug tests. Given
wells at which testing and monitoring can be performed,
a field practitioner faces a few decisions regarding test
setup. In the case of constant-rate pumping tests, the
main considerations are the design pumping flow rate,
and the length of time to continue the test. With only
basic knowledge of expected average aquifer properties, a
reasonable choice for both of these design parameters can
be deduced using standard analytical solutions. Likewise,
many methods have been developed to analyze such tests
across a variety of aquifer scenarios—see, for example,
the recent summary by Yeh and Chang (2013). Similarly,
in the case of impulse tests such as slug tests, there are a
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number of recognized guidelines for designing tests to suit
the particulars of a given geologic environment and well
construction, and similar guidelines for applying different
analytical methods (Butler 1998).

Another set of testing strategies that can be employed
for formation characterization involves periodic (rather
than constant) pumping strategies, in which the flow
rate at a well is varied in a repeatable fashion. Several
publications have noted practical and analytical benefits in
applying such tests—most especially, the ease with which
the resultant periodic pressure signal can be accurately
extracted even in the presence of significant sensor noise
and drift (Johnson et al. 1966; Kuo 1972; Hollaender et al.
2002; Rasmussen et al. 2003; Renner and Messar 2006;
Bakhos et al. 2014). However, to date this strategy is
not often applied in hydrogeologic characterization, and
there are only a few references that offer guidance on
specifics of implementation (Vela and McKinley 1970;
Black and Kipp 1981). The purpose of this paper is: (1)
to provide some basic test design guidance for oscillatory
(or periodic) pumping tests that can be used to size field
testing hardware and select operational parameters (e.g.,
period length and cycle magnitude); and (2) to provide
a basic visual method for understanding the volume of
aquifer sensed through such testing.

Several variants of what we call periodic pumping
tests can be found in the literature, in which a repeated
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pumping pattern is used to cause observable pressure sig-
nals within a geologic formation. Perhaps the earliest
developed example, called the pulse test in the petroleum
literature, was suggested by Johnson et al. (1966) for
petroleum reservoir characterization. In this test, a well is
pumped at a constant rate for a set period of time, followed
by a non-pumping period of time (“shut in” interval). This
alternating sequence of pumping and non-pumping time
intervals is repeated multiple times, and diagnostics such
as the pressure transient amplitude and travel time are
used to understand formation heterogeneity. In the case
of the pulse test, since there is net extraction over the
period of testing, the pulses appear as a periodic signal
superimposed on an overall drawdown trend. Kuo (1972),
in another application to petroleum exploration, suggested
and analyzed the properties of sinusoidal flow tests, in
which the flow rate follows a sinusoidal curve. These tests
have been discussed occasionally in both the petroleum
and hydrogeologic literature, appearing under several dif-
ferent names: cyclic flow rate tests (Rosa and Horne
1997), periodic pumping tests (Renner and Messar 2006),
harmonic pumping tests (Revil et al. 2008), and oscilla-
tory pumping tests (Cardiff et al. 2013a), among others.

While suggested over 40 years ago, there are rel-
atively few documented field applications of periodic
pumping test analyses in the hydrogeologic literature.
Lavenue and de Marsily (2001) discussed an application
in which sinusoidal pumping tests performed at the Waste
Isolation Pilot Plant (WIPP) were used as a data source
for pilot point-based inverse modeling. Rasmussen et al.
(2003) applied sinusoidal pumping tests at the Savannah
River site, estimating effective homogeneous aquifer
parameters by using an analytical model. Renner and
Messar (2006) analyzed data from a set of periodic
pumping tests performed at a site in Bochum, Germany,
also by using an analytical model. Maineult et al. (2008)
and Revil et al. (2008) later analyzed self-potential
signals associated with periodic pumping, from the
same site in Germany. Becker and Guiltinan (2010)
applied periodic testing to a sandstone formation at
the Altona Flat Rock experimental site in New York
State, USA. Jazayeri Noushabadi et al. (2011) used
analytical modeling of pulse pumping tests performed
in the Lez aquifer of southern France to investigate the
scale effects of permeability estimation. At the GEMS
site in Kansas, USA, McElwee et al. (2011) used an
approximate model of oscillatory pressure travel time
to tomographically analyze periodic pumping test data.
Most recently, Fokker et al. (2013) re-analyzed data from
the periodic tests of Renner and Messar (2006) using a
numerical modeling approach to estimate parameters of
geometrically constrained geologic bodies.

Recent work has suggested that periodic pumping
tests may provide valuable information about aquifer
heterogeneity (Cardiff et al. 2013a) through tomographic
(inverse) analyses. In addition, modeling of periodic tests
can be performed in the frequency domain, allowing faster
simulations than are possible with typical transient numer-
ical models (e.g., Townley 1993; Cardiff et al. 2013a).

Periodic pumping tests also have several practical benefits
for field implementation, especially in cases where the
oscillatory pumping is “zero-mean,” that is, the pumping
strategy consists of alternating periods of injection and
extraction, so that no net drawdown is caused:

• Oscillating signals of known frequency are easily
separated from sensor noise and drift, and from other
over-printed hydrologic processes by using Fourier-
domain signal processing routines (Bakhos et al. 2014).

• Zero-mean periodic pumping tests may help to avoid
costs and risks associated with handling and treating
significant amounts of contaminated water, relative to
traditional pumping tests.

• Zero-mean periodic pumping tests of reasonable ampli-
tudes should not cause significant contaminant plume
movement, relative to traditional pumping tests, since
the average flow velocity induced by such pumping is
zero in all directions.

• Periodic testing can be performed at different frequen-
cies to obtain additional information about aquifer het-
erogeneity (Cardiff et al. 2013a).

• In scenarios where continuous pumping is required
(e.g., a pump-and-treat capture well), a periodic signal
can be over-printed on the pumping well by periodically
varying the pumping rate above and below the desired
long-term rate.

These advantages of periodic pumping tests have
been previously discussed also in the petroleum explo-
ration literature (Hollaender et al. 2002).

A key drawback of oscillatory pumping tests, how-
ever, is that they require specialized field hardware to
perform. The existing applications referenced earlier have
developed a variety of methods for implementing periodic
pumping tests, each with its own benefits and drawbacks.
Table 1 contains a summary of methodologies and appara-
tuses that have been implemented in the field to generate
periodic signals, along with a qualitative comparison of
their limitations. Perhaps because of the large degree of
variation in how periodic tests are implemented, there is
almost no guidance in the literature on how to effectively
implement a periodic test at a particular field site, and
using a particular methodology. The purpose of this paper
is to provide some broadly applicable analytical tools that
can be used to assess periodic pumping feasibility and
guide selection of appropriate periodic testing methodolo-
gies for field characterization.

In this work, we focus discussion on sinusoidal
pumping tests of a given frequency as suggested by
Kuo (1972), though theory for sinusoidal test analysis
can be extended to any periodic test by using impulse
and response superposition principles. In particular, we
present two key results. First, we provide practical
guidelines for maximizing signal propagation over a
distance under physical constraints that are likely to
be encountered, including limitations regarding the total
volume cycled, the frequency of cycling, the maximum
flow rate during cycling, and the amplitudes of pressure
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Table 1
Qualitative Summary of Methods Employed to Generate Periodic Signals for Aquifer Testing in the Field,

and Their Limitations

Limitation Type

Periodic Testing
Method

Example
Application

Total
Volume
Cycled

High-
Frequency
Constraints

Low-
Frequency
Constraints

Maximum
Flow Rate

During
Cycle

Pumping
Well

Pressure
Changes

Other Testing
Issues

Pulsed extraction Jazayeri
Noushabadi et al.
(2011)

Important Very
important

Important Oscillatory flow
superposed on
overall drawdown
signal

Sinusoidal pumping
rate variation

Lavenue and de
Marsily (2001)

Important Very
important

Important Oscillatory flow
superposed on
overall drawdown
signal

Sinusoidal
injection/extraction
from surface tank

Rasmussen et al.
(2003)

Very
important

Important Very
important

Important

Sinusoidal
raising/lowering of
a solid slug

Becker and
Guiltinan (2010)

Very
important

Important Important Flow rates to
formation may be
impacted by well
hydraulics

Sinusoidal movement
of in-borehole
piston

BHRS (this work) Very
important

Important Important Important

Sinusoidal variation
of air pressure
above water
column

PneuSine testing1 Very
important

Important Total volume that can
be cycled
dependent on
unscreened interval
available

1Further information on PneuSine testing can be found at: http://www.in-situ.com/cp/uploads/PneuSine_Test_HydroResolutionsLLC.pdf.

changes generated near the oscillating pumping well.
This set of guidelines is validated through observed
signal amplitudes from a set of oscillatory pumping
tests performed at the Boise Hydrogeophysical Research
Site (BHRS). Second, we present a method for quickly
visualizing and understanding the sensitivity of oscillatory
tests to spatially distributed aquifer flow parameters (i.e.,
heterogeneity). These two tools provide quick methods
for evaluating the feasibility of sinusoidal testing for
particular sites, for developing appropriate sinusoidal
testing experimental designs, and for understanding the
impact of heterogeneity on oscillatory pumping test
responses.

Mathematical Formulation
We consider periodic testing in which the linear

approximation of periodic flow applies throughout the
aquifer (for a relevant discussion of the range of
applicability of this approximation, see Smith 2008), and
thus one of the following governing equations can be
used. For a two-dimensional (2D) aquifer test (i.e., fully
penetrating), the following governing equation is assumed
within the aquifer:

S (x)
∂h

∂t
= ∇· (T (x) ∇h) (1)

where x represents the spatial coordinates vector, t
represents time, and S [–] and T [L2/T ] are the 2D
aquifer flow parameters storativity and transmissivity
(both assumed to be time invariant).

Likewise, for a three-dimensional (3D) aquifer test
(e.g., a partially penetrating test over a small testing
interval), the following governing equation is assumed
within the aquifer:

Ss (x)
∂h

∂t
= ∇· (K (x) ∇h) (2)

where specific storage S s [L−1] and hydraulic conductivity
K [L/T ] (assumed isotropic at the scale of interest) are
flow parameters for an aquifer experiencing 3D flow. In
both cases, h [L] is the hydraulic head field variable,
which varies with space and time.

In the case where a periodic test consists of sinu-
soidal pumping at a point location with a single, known
frequency, the source term is considered as a point source
located at the origin, with a time-varying flow rate equal
to:

Q(t) = Qpeak cos (ωt) (3)

where Qpeak is a peak volume flow rate [L3/T ], and ω

[1/T ] is the angular frequency, equal to 2π /P , where P
[T ] is the pumping period. If the aquifer is assumed to
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be homogeneous and infinite in extent, and if pumping is
represented as a point source in either 2D or 3D, radially
symmetric analytical solutions can be derived that satisfy
these governing equations. Furthermore, the problem can
be simplified by only modeling the “steady-periodic”
conditions, represented by consistent amplitude and
phase at every point in space, which occurs once the
oscillatory flow field has developed (often after about
1 to 5 periods of oscillation). Once steady periodic
conditions are achieved, head change in the aquifer can
be represented as:

h
′
(r, t) = Re

[
�(r) exp (iωt)

]
(4)

where r [L] represents radial distance from the sinusoidal
pumping well, Re represents the real part of the given
argument, and �, the wave phasor, is a complex variable
that determines the amplitude and phase of the head
changes at every point in space. Black and Kipp (1981)
originally derived the analytical solutions for the phasor
under both 2D (line source) and 3D (point source) cases.
In the 2D (line source) case, the solution is:

�(r) = Qpeak

2πT
Ko

((
ωr2S

T

)1/2

exp (iπ/4)

)
(5)

where Ko is the modified Bessel function of the second
kind. For the 3D (point source) case,

�(r) = Qpeak

4πKr
exp

(
−

(
1 + i

21/2

)(
ωSsr

2

K

)1/2
)

(6)

Optimization Formulation for Test Design
A successful periodic test can be considered one in

which (1) the field hardware is able to reliably generate
a periodic flux “source” with desired parameters; and (2)
the signal is measurable at an observation (“receiver”)
well, such that it can be processed and information can
be extracted. The source of stimulation, in field practice,
is always bounded by technical limitations. Technical
constraints affecting source properties are summarized
qualitatively in Table 1, which shows testing methods that
have been used to cause periodic pressure changes in a
formation. In general, testing strategies that make use of
pumps will face limitations on maximum attainable flow
rates, and on the ability to produce high-frequency signals.
Conversely, strategies that rely on pistons or slugs are
inherently limited by the total volume cycled per period.

Consider that an oscillatory testing apparatus is
developed that can be operated to obtain a variety of
different flow rates and periods, all of the form:

Q(t) = Qpeak cos

(
2πt

P

)
(7)

The design parameters for the oscillating pumping
test are P and Qpeak. Note that, for a chosen period and

peak flow rate, the total volume injected/extracted per
half period is:

V =
∫ P/4

−P/4
Qpeak cos (2πt/P ) dt = QpeakP/π (8)

To determine whether sinusoidal testing is feasible at
a given site, one should verify in advance that one can
expect to clearly observe responses at wells separated by
a given radial spacing from the oscillating pumping well.
However, the propagation distance of signals is crucially
dependent on the period of the sinusoidal signal and the
peak volume flow rate, both of which may be modified.
To determine overall feasibility of testing, we formulate
an optimization problem in which one seeks to maximize
the signal magnitude at a given radius from the pumping
well subject to relevant design constraints:

max
P,Qpeak

M
(
robs, Qpeak, P

)
(9)

subject to:
0 ≤ Qpeak ≤ Qmax (10)

Pmin ≤ P ≤ Pmax (11)

0 ≤ V ≤ Vmax (12)

M
(
rpump, Qpeak, P

) ≤ Mpump (13)

where M (robs, Qpeak, P ) is a function that calculates
the amplitude of head oscillations at a distance from
the origin, and the constraints represent, respectively:
maximum peak flow rates obtainable, minimum and
maximum oscillation periods obtainable, maximum total
volume cycled during oscillation, and maximum head
changes allowed at the radius of the oscillating well casing
rpump. If the maximum signal amplitude found through
such an optimization is easily measurable, then it is likely
that the well arrangement and the aquifer are amenable
to testing with oscillating signals at a range of periods.
However, if the maximum signal amplitude found through
this optimization is expected to be very weak, there is little
hope of obtaining any meaningful data with the provided
equipment limitations and well-field design.

Optimization Under Volume Constraints Alone
We consider first the simple case in which the

only relevant constraint is the total cycle volume of
the oscillating signal generator (OSG). Referring back to
Equation 4, the amplitude of a response at a given location
can be found as the modulus (amplitude) of the phasor,
i.e.

M = |�| = (
Re (�)2 + Im (�)2)1/2

(14)
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Point-Source Case
If the total volume of an oscillator is limited by V max,

then Equation 8 above implies that, for any given period,
the maximum flow rate obtainable will be:

Qpeak = Vmaxπ

P
(15)

This maximum flow rate will lead to the maximum
possible signal at a given period P , subject to the total
volume constraint. The magnitude of the response at any
point in space can be written by taking the modulus of
Equation 6 and substituting in Equation 15:

Mptsrc = Vmax

4PKrobs
exp

[
−robs

(
πSs

PK

)1/2
]

(16)

We seek to maximize the amplitude at a given
distance (and for given approximate estimates of K and
S s). Taking the usual approach of differentiating and
setting derivatives equal to 0, we find:

∂Mptsrc

∂P
= ∂

∂P

[
Vmax

4PKrobs
exp

[
−robs

(
πSs

PK

)1/2
]]

=
(
− Vmax

4P 2Krobs
+ Vmaxπ

1/2S
1/2
s

8K3/2P 5/2

)
exp

[
−robs

(
πSs

PK

)1/2
]

Since the exponential term will never be 0 unless
P → 0 (which would imply a non-physical infinite-
frequency oscillator), we set the first term to 0 and find:

P = πSsr
2
obs

4K
(17)

So, for an oscillator setup with total cycle volume
constraint V max on the oscillator, and where we are trying
to obtain the largest measurable signal at distance robs, the
optimum period P̂ and flow rate amplitude Q̂peak are:

P̂ = πSsr
2
obs

4K
(18)

Q̂peak = 4VmaxK

Ssr
2
obs

(19)

At this distance, the signal amplitude expected using
period P̂ can be found by plugging Equation 18 into
Equation 16, yielding:

M̂ptsrc = Vmax

πSsr
3
obs

exp (−2) (20)

where M̂ptsrc is the maximum possible signal amplitude
attainable at distance robs under volume constraints.

Equation 20 provides a guideline for oscillator system
sizing which is notably independent of aquifer hydraulic
conductivity. As a relatively general example, supposing a

representative (confined storage) S s value of ≈10−6 (1/m),
and likewise supposing that signals obtained must be on
the order of 1 mm in order to be measurable, this implies
that, under confined conditions, the volume required to
generate a measurable signal scales with distance to be
investigated as:

V ≈ r3
obs × 2.32E − 8

Line-Source Case
For the case of a fully penetrating sinusoidal pumping

well, the analogous signal amplitude is obtained from
plugging Equation 15 into the 2D phasor solution,
Equation 5, and taking the modulus, as before. The
obtained amplitude is:

Mlinesrc = |C| = (
Re (C)2 + Im (C)2)1/2

C = Vmax

2PT
K0

⎡⎣(
2πr2

obsS

PT

)1/2

exp (iπ/4)

⎤⎦ (21)

Multiplying the amplitude M linesrc [L] by r2S /V max

[1/L], we obtain a non-dimensional amplitude that we
denote μ:

μ = Mlinesrc r2
obsS

Vmax

=
∣∣∣∣ λ

4π
K0

[
λ1/2 exp (iπ/4)

]∣∣∣∣ (22)

where λ is the dimensionless quantity 2πr2
obsS/PT .

The value of λ which maximizes the non-dimensional
amplitude μ (denoted λ̂ and μ̂, respectively), can be found
through numerical optimization, and is:

λ̂ ≈ 4.7183 (23)

μ̂ = μ
(̂
λ
) ≈ 0.0661

Thus, for a constant-volume fully penetrating oscilla-
tor system, the optimal period P̂ and associated flow rate
amplitude Q̂peak are:

P̂ = 2πr2
obsS

λ̂T
≈ 2πr2

obsS

4.7183T
(24)

Q̂peak = Vmax̂λT

2r2
obsS

≈ 4.7183VmaxT

2r2
obsS

(25)

At this optimal period, the signal amplitude obtained
is maximized and is equal to:

M̂linesrc = μ
(̂
λ
)
Vmax

r2
obsS

≈ 0.0661
Vmax

r2
obsS

(26)
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Optimization Under Multiple Constraints
The key formulas presented above (Equations 18–20

and Equations 24–26) provide analytical results that can
quickly be used in the field with simple computations that
require only a calculator. The more general optimization
formulation, Equations 9–13, which includes constraints
on the maximum and minimum period, maximum and
minimum allowable flow rates, and maximum near-well
head change, is a nonlinearly constrained optimization
problem with a nonlinear objective function—generally
a quite difficult problem. It turns out, however, that the
more general formulation can be solved semi-analytically
due to some nice mathematical properties. Specifically,
the objective function is provably monotonic within the
feasible region of the optimization problem, and thus the
optimum period and flow rate must fall along one of
the constraint boundaries. For the reader interested in the
mathematical details of this derivation, we provide them
in Appendix S1, Supporting Information, for this paper.
For the purposes of this paper, we simply provide the final
analytical result, along with MATLAB code that can be
used to perform the computations.

Point-Source Case
For the point-source case, the following steps should

be performed in order to find the P and Qpeak that
correspond to the optimum signal propagation:

1 Check whether the point P = πSsr
2
obs/4K , Qpeak =

4Vmax K/Ssr
2
obs meets all of the problem constraints.

If so, evaluate M ptsrc at this location.
2 Evaluate M ptsrc at all other intersection points of

constraint equalities that define the boundaries of the
feasible region.

3 The global optimum must be, amongst those points
found in Steps 1 and 2, the point with the highest M ptsrc

value.

This algorithm is implemented in the supplied
MATLAB code oscill_opt_ptsrc_nonlcon.m.

To test these algorithms, we show optimizations
for three different hypothetical aquifer testing scenarios.
All three scenarios (with parameters given in Table 2)
represent confined aquifers, though they span a range
of hydraulic conductivity values. In each case, we
assumed a relatively small volume of oscillation (less
than 10 L), and a relatively small well spacing of 10
to 20 m, appropriate perhaps for detailed contaminated
site investigation. While appropriate for some types
of hydrogeologic investigations, other cases (e.g., with
larger cycle volumes and larger inter-well distances)
can be tested using the supplied code. Figure 1 shows
several examples of the feasible region and objective
function value for the three different cases, and this
figure emphasizes that the location of the global optimum
is dependent on the particular scenario under study. In
all cases, the small circle represents the location of the
optimum found by applying the above algorithm. As can

Table 2
Parameters Used in the Optimization Test Cases

Shown in Figure 1

Case (a) Case (b) Case (c)

Inputs
K (m/s) 1E−03 1E−06 1E−07
S s (1/m) 1E−06 1E−06 1E−06
robs (m) 10 20 20
V max (L) 10.0 0.2 1.0
Pmax (s) 3600 3600 10,000
Pmin (s) 10 50 100
rpump (m) 0.05 0.10 0.10
M pump (m) 1.00 2.00 1.00

Optimized testing parameters
P (s) 49.98 314.16 10,000
Qpeak (L/s) 6.29E−01 2.00E−03 1.26E−04
M (mm) 4.62 1.08 1.64

be seen, the algorithm locates the optimum period and
peak flow rate for obtaining a maximum signal amplitude.

Line-Source Case
The algorithm for the line-source (fully penetrating)

case is only slightly different:

1 Check whether the point P = 2πr2
obsS/̂λT , Qpeak =

λ̂T Vmax/2r2
obsS meets all of the problem constraints.

If so, evaluate M linesrc at this location.
2 Evaluate M linesrc at all other intersection points of

constraint equalities that define the boundaries of the
feasible region.

3 The global optimum must be, amongst those points
found in Steps 1 and 2, the point with the highest
M linesrc value.

This algorithm is implemented in the supplied
MATLAB code oscill_opt_linesrc_nonlcon.m.

Field Data Example
A set of partially penetrating (1 m interval) oscillatory

pumping test experiments were planned and carried out
during Summer, 2013, at the Boise Hydrogeophysical
Research Site (BHRS) as a preliminary effort to validate
the use of oscillatory pumping for aquifer imaging
(Cardiff et al. 2012b). The aquifer at the BHRS consists
of sand-and-gravel deposits adjacent to the Boise River,
with an average K ≈ 8e − 4 [m/s] (Barrash et al. 2006).
The aquifer is unconfined with an average porosity of
≈0.22 [–] (Barrash and Clemo 2002), though prior testing
at the site analyzing pumping tests of 20 to 1000 min in
duration have obtained “effective” (i.e., partially drained)
specific yield values of Sy ≈ 0.03 [–] (Barrash et al. 2006).
Specific storage has been estimated previously at around
S s ≈ 4e − 5 [1/m], using standard constant-rate pumping
tests analyzed with homogeneous models (Barrash et al.
2006). Primary infrastructure at the site consist of 18 fully
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Figure 1. Three examples of constrained optimization of oscillatory pumping. Colored area shows objective function value
(signal magnitude), with lines representing implemented constraints. The circle in each case represents the optimal parameter
set chosen, based on the supplied MATLAB code. Visual inspection of the full objective function plot shows that the optimum
found is the location of the largest feasible signal magnitude. Note that in each case a different set of optimization constraints
is active (i.e., the optimum does not always fall along the same constraint boundary).

penetrating wells screened throughout the sand-and-gravel
formation and completed into an underlying aquitard.
The central well field consists of a central well (A1)
surrounded by two roughly concentric “rings” of six wells
each (B1 to B6 wells and C1 to C6 wells). Lastly a set of
five wells (X1 to X5) surround the central well field and
provide the ability to monitor boundary condition impacts.
Other wells, piezometers, and monitoring instrumentation
have been installed at the site throughout its history, and
numerous characterization efforts have been performed
including hydrologic and geophysical methods. A full
summary of site activities is beyond the scope of the
text, though the interested reader is directed to our prior
publications that describe site design and testing results
(Barrash et al. 1999, 2006; Barrash and Clemo 2002;
Cardiff et al. 2009, 2011, 2012a, 2013b), as well as to
the site webpage at http://cgiss.boisestate.edu/bhrs/.

An oscillating in-well “piston” design was developed
in which a metal shaft with maximum stroke length
0.91 m (for a total displacement of ≈1.85 L) would be
used to cause injection and extraction of water from the
desired testing interval without removing water from the
well or pumping water into the well from the surface. A
piston at the land surface was moved by an electric motor
connected to a crankshaft which converted rotational
energy to reciprocal motion. The surface piston was then
hydraulically connected to a sealed, down-hole piston
below the water table which acted on a 1-m aquifer inter-
val, sealed above and below with packers. This down-hole
piston thus directly forced water into the formation at the
given testing interval during downward piston movement
and pulled water out of the formation during upward
piston movement. Based on the engine used and gearing,
it was estimated that the OSG would be able to produce
oscillation periods between roughly 1 and 100 s.

Before performing field experiments, we utilized
the developed equations to determine the feasibility of
oscillatory pumping tests based on the above design

constraints. Because the pumping tests planned would
perform oscillations within a small interval in the aquifer,
we chose to use the point-source set of formulas as
an approximation to predict responses. The Black and
Kipp (1981) formulas, as noted earlier, assume an aquifer
under confined conditions with infinite extent in all
three directions. This is a very rough approximation
of the BHRS aquifer, which has a saturated thickness
of about 16.5 m during the Summer testing period.
In order to apply the developed formulas, a single
representative value for aquifer storage must also be
chosen. This again requires a rough approximation of
the BHRS aquifer that experiences both compressive
storage and water table (drainable) storage. Based on
prior experience, the representative storage value was
chosen to be equal to the specific storage coefficient of
4e − 5 [1/m]. This approximation was deemed reasonable
based on observations of the amount of time required
(10 min or more) to achieve representative “late time”
storage behavior during constant-rate pumping tests
(Barrash et al. 2006), though it should be noted that
this approximation can be expected to be less accurate
when pumping takes place near the water table. A
measurement radius of 15 m between oscillating pumping
and observation locations was chosen, representing some
of the larger distances expected from the test design.

Using the parameters above, the simpler formulation
considering only volume constraints (Equations 18–20)
yields: P̂ ≈ 9 s, Q̂peak ≈ 0.65 L/s, and M̂ ≈ 0.6 mm.
Notably, this period of oscillation was well within the
range expected to be possible with the planned OSG,
and a head-change magnitude of 0.6 mm (or 1.2-mm
peak-to-trough amplitude) was known to be measur-
able with the fiber-optic pressure sensors planned for
use. The additional constraint of ensuring reasonable
drawdowns/pressure build-ups near the pumping well is
important at the BHRS aquifer, so we additionally applied
the constrained optimization in which the casing radius
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Figure 2. Results of optimization of field testing plan for the
BHRS. Circle shows optimal value obtained by application
of formulas. Colored area shows feasible region for this
application, showing a range of periods across which signals
of 1 mm or greater are expected to be detectable.

of the pumping well, rwell, was set to 0.05 m, and the
maximum head changed allowed at the casing radius was
M pump = 1 m. Cycle periods of 1 − 100 s were used as
constraints for the period. The results of the constrained
optimization are shown in Figure 2, where an optimum
period of P̂ ≈ 11.5 s is obtained. The optimum being at
this slightly longer pumping period is due to the near-well
head-change constraint (i.e., formula 13), but does not
result in a significant change in the optimum signal magni-
tude (M̂ = 0.58 mm). The gentle decrease in the objective
function in Figure 2 also shows that there is a fairly
broad range of periods across which oscillating testing is
expected to yield measurable signals at a distance of 15 m.

Field testing was carried out during July 2013 using
the piston OSG described earlier. Examples of raw
observation data obtained from the BHRS testing are
shown on the left in Figure 3, for four different oscillation
periods. In each of these tests, oscillations were induced
in a 1-m interval in a testing well (B3), with the interval
centered at roughly 5 m below the water table. The
responses shown represent pressure changes in a well
located 10.55 m away laterally (C4), in a 1-m observation
interval centered 10.6 m below the water table. Given
the site geometry, the data here represent head-change
signals collected by a transducer located 11.83 m total
distance from the oscillating pumping location. Coherent
signals in the raw data demonstrate that even small-
volume oscillations (≈0.45 L was used in this case)
are measurable over distances of ≈12 m. The frequency
spectra for these signals (Figure 3, right) show that
power on the order of 0.4 to 0.7 mm head change is
observed for tests at periods of 8 to 25 s with the highest
peaks occurring when the pumping period is around 14 s
(Figure 3c). It should be noted that secondary peaks

can be found in many of these frequency spectra, and
represent harmonics of the fundamental testing frequency.
This is due to the fact that the oscillatory testing apparatus
produced a periodic but not exactly sinusoidal stimulation.
Similarly to the results predicted by the pre-test analyses
(Figure 2), high signal powers are produced even at
longer stimulation periods than the predicted 9- to 12-
s optimum, though they decrease somewhat at longer
periods (Figure 3a and 3b) and appear to rapidly attenuate
at shorter periods (Figure 3d).

Sensitivity Analysis
Steady-periodic theory can be used to derive sensi-

tivity maps that show the sensitivity of measurements to
parameters such as spatially distributed K and S s. These
analyses show that measurements, such as signal ampli-
tude and phase recorded at an observation well, have
different averaging volumes associated with different test-
ing periods. Perhaps unsurprisingly, tests at short peri-
ods (high frequencies) are more dependent on near-field
aquifer heterogeneities, whereas longer period (lower fre-
quency) tests are sensitive to aquifer heterogeneities over
a larger volume.

One method for investigating the “averaging volume”
associated with aquifer testing is through adjoint sen-
sitivity analyses (see, e.g., formulations in Sykes et al.
1985; Neupauer and Wilson 1999; Cirpka and Kitanidis
2001; Cardiff and Kitanidis 2008), which provide math-
ematical expressions for computing the sensitivity of an
observation to spatially distributed aquifer properties. The
most common use of adjoint sensitivity calculations is in
the numerical computation of spatial sensitivities required
during tomographic inverse problems. However, adjoint
sensitivity integrals can also be combined with analyti-
cal (homogeneous) solutions. Sensitivity maps derived in
this way represent the linearized sensitivity of an obser-
vation to perturbations in aquifer parameters throughout
the domain. As an example, Leven and Dietrich (2006)
present an analysis showing how the Theis solution can
be combined with adjoint state theory to understand the
sensitivity of constant-rate pumping test observations to
spatially distributed aquifer heterogeneity. In this section,
we present a similar analysis for the case of oscillating
flow tests at different frequencies. We first review the
key formulas used to compute adjoint state sensitivities
for oscillatory flow problems and then show how ana-
lytical solutions can be used to develop sensitivity maps
quickly. These maps provide a visual explanation of the
changes in the sensed region of an aquifer under dif-
ferent pumping frequencies, and can be used to assess
what portion of an aquifer is being interrogated by a
given testing design (i.e., the well locations and oscillatory
period).

Adjoint Theory
As developed in Cardiff et al. (2013a), for an infinite

domain �, the sensitivity of a measurement mi to a
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Figure 3. Field data from the BHRS 2013 testing campaign. 100 s of raw data at four different periods (left), and frequency
spectra (right) showing strong peaks at the testing frequency and associated harmonics.

parameter value p is found using the adjoint state
formulation as:

∂mi

∂p
=

∫
�

iωψi

∂Ss

∂p
�ω + ∂K

∂p
∇�ω· ∇ψi d�, (27)

where ω is the angular frequency of the testing, �ω is the
phasor solution at that frequency, and K and S s represent
assumed average conductivity and storage parameters
for an aquifer. The variable ψ i is the so-called “adjoint
field variable,” which is used in sensitivity calculation.
For the case of a point observation, the adjoint field
solution is found by solving the steady-periodic flow
problem with an appropriate point-source term located at
the observation point.

In particular, an intuitive set of signal metrics
describing response at an observation point are the
amplitude and phase offset of the measured signal (with
phase measured relative to the source signal). As shown
in the appendix of Cardiff et al. (2013a), this can be
represented by defining a complex-valued observation

mi that contains the log-amplitude and phase (i.e., the
complex modulus and complex argument) as its real and
imaginary components:

mi =
∫

�

ri d� (28)

ri = [
ln (|�ω|) + i arg (�ω)

]
δ (x − xi ) (29)

where xi is the location of measurement i . The mathe-
matical details and background for this choice are beyond
the scope of this work, but can be found in the reference
given above. The key result, however, is that the adjoint
source term for such an observation should be equal to:

∂ri

∂�ω

= 1

�ω

δ (x − xi ) (30)

that is, a point source with magnitude 1/�ω.
We now combine the adjoint state equations above

with the analytical solutions developed by Black and
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Kipp (1981) for point-source and line-source solutions.
This makes it possible to generate sensitivity maps
that can be used to understand the averaging volumes
associated with testing at different periods. The key steps
to performing such an analysis are outlined below, and
an implementation of this process can be found in the
supplied MATLAB codes oscill_sens_linesrc_vis.m and
oscill_sens_ptsrc_vis.m, along with their associated called
functions.

1 Supply the location of the oscillating pumping well,
the maximum flow rate Qpeak, the angular frequency of
oscillation ω, the location of the observation well, and
approximate estimates of the aquifer conductivity and
storage parameters.

2 The phasor-domain solution, �ω, is given by the
appropriate 2D or 3D (Black and Kipp 1981)
solution.

3 Calculate the phasor value of the Black and Kipp (1981)
solution at the location of the observation well, and call
this �obs.

4 The adjoint solution, ψ i, is given by the appropriate 2D
or 3D Black and Kipp (1981) solution with Qpeak set
equal to 1/�obs.

5 Based on Equation 27, the sensitivity map of signal
log-magnitude or phase to conductivity or storage
parameters can be found through the appropriate inner
product:

• Sensitivity of log-amplitude, ln(|�ω|), to ln(K ):
Re(K∇�ω · ∇ψ i ).

Figure 4. Example of sensitivity maps produced through combination of analytical solution with adjoint theory. Sensitivities
are unitless sensitivity of ln(signal amplitude) to ln(K ) and ln(S s). All maps use the same scale, with red representing positive
and blue representing negative sensitivities. Note broadening and diffusion of the sensitivity structure at larger periods.
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• Sensitivity of log-amplitude, ln(|�ω|), to ln(S s):
Re(iωψ i S s�ω).

• Sensitivity of phase, arg(�ω), to ln(K ):
Im(K∇�ω · ∇ψ i )

• Sensitivity of phase, arg(�ω), to ln(S s):
Im(iωψ i S s�ω).

Example Visualizations
We now present one example of how these computa-

tions can be used to assess spatial sensitivity of measure-
ments to aquifer parameters. This example considers an
aquifer with diffusivity (K /S s) equal to 1, and with a pair
of pumping/observation wells spaced 5 m apart, located at
(−2.5, 0) and (2.5, 0), respectively.

In Figure 4, the spatial sensitivity structure of
ln(amplitude) to aquifer parameters is shown across a
range of testing periods. While the shortest testing period
of 0.1 s may be physically unreasonable, it emphasizes
the message that at very short testing periods, the
sensitivity is almost entirely contained between the
pumping and observation wells. As longer periods are
used, the sensitivity structure broadens and “diffuses”
outward, showing that these tests will be sensitive to
aquifer parameters over a broader area.

These maps emphasize that oscillatory testing data
at different stimulation periods should be interpreted
carefully, since data from different periods of testing
(if fit using a homogeneous model) may produce dif-
ferent “effective” aquifer parameters. This is simply
a manifestation of the different averaging volumes
of these tests, and may help to explain the “intrinsic
period-dependence” of hydraulic properties observed by
both Renner and Messar (2006) and Becker and Guiltinan
(2010) in previous analyses.

Summary and Conclusions
Oscillatory pumping tests are not presently a widely

used strategy for aquifer characterization. However, the
benefits associated with these tests (such as no net water
extraction, and multi-frequency sensitivity to different
averaging volumes or scales) may prove useful for
contaminated site investigation and other purposes. In this
paper, we have developed several analytical tools that
can be used to design and analyze oscillatory pumping
tests. While the background mathematics for some
of these tools is fairly involved—using phase-domain
mathematics—all key results can be applied immediately
with pencil and paper, or through MATLAB programs
using a laptop computer. It is the authors’ hope that
these simple tools will make the application of oscillatory
pumping tests more approachable, and will produce
effective designs for oscillatory testing in the field.

We first presented a set of formulas that can be
used to choose appropriate oscillatory pumping test
design parameters, given only limited knowledge of
bulk or “effective” aquifer properties. Based on the
aquifer parameters and a planned machinery design, the

key formulas presented (Equations 18–20 and Equations
24–26) can be used to quickly determine reasonable
testing strategies. With significant design constraints,
simple MATLAB codes can be used to verify testing
feasibility. After using this approach to develop a testing
strategy for a field campaign at the BHRS in Boise, ID,
we showed how results from the field testing indicate that
the testing design parameters used were well-optimized.

Secondly, we presented a method for understanding
how the response to an oscillatory pumping test will be
dependent on spatially distributed aquifer parameters. The
code presented uses analytical solutions for oscillatory
tests coupled with an adjoint sensitivity analysis to quickly
and analytically derive sensitivity maps. Again, by using
only a simple MATLAB program and bulk estimates of
aquifer parameters, a field practitioner can understand the
spatial volume or scale “covered” by a given oscillatory
pumping test, and how this sensitivity changes as a
function of the oscillatory testing period.
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